CS335
Fall 2007

2D Drawings: Circles and Curves
Representing A Circle

Explicit representation:

\[ y = \pm \sqrt{r^2 - x^2} \]

Implicit representation:

\[ F(x, y) = x^2 + y^2 - r^2 \]
\[ F(x, y) = (x - x_c)^2 + (y - y_c)^2 - r^2 \]

Parametric representation:

\[ x = r \cos \theta \]
\[ y = r \sin \theta \]
Drawing Circles

Equation for a circle:
Given: center = \((x_c, y_c)\) and radius \(r\)

\[
(x - x_c)^2 + (y - y_c)^2 = r^2
\]

\[
y = y_c \pm \sqrt{r^2 - (x_c - x)^2}
\]

Not an ideal approach:
Non-uniform spacing during evaluation causes noticeable artifacts

Also, we have to evaluate \(^2\), and \(\text{sqrt}()\)
Drawing Circles

Parametric Polar Representation for circle:

\[ x = x_c + r \cos \theta \]
\[ y = y_c + r \sin \theta \]

Allows a uniform spacing via the \( \theta \) variable

\( \theta \) step size is often set to be \( 1/r \).

We can render adjacent points via lines (to avoid gaps)
Drawing Circles

We can reduce the number of calculation:

Exploit Symmetry of Circle

Need only to compute \( \theta \in (0, 45^\circ) \) or \( (90^\circ, 45^\circ) \)
The Circle Midpoint Algorithm

Key idea: at each step, decide which pixel (E or SE) is closest to the circle. Choose that pixel and draw it.

Goals:
- Implicit formulation
- Finite differences (incremental)
- Integer arithmetic
The Implicit Circle Equation

If M lies inside the circle, draw pixel E
If M lies outside the circle, draw pixel SE

\((x_p, y_p)\)
Implicit Formulation

\[ F(x, y) = x^2 + y^2 - r^2 = 0 \]

Notice that \((x^2 + y^2) > r^2\) means \(F(x, y) > r^2\)

\[(x^2 + y^2) > r^2\]
\[y^2 > r^2 - x^2\]
\[y > \sqrt{r^2 - x^2}\]

\(F(x, y) > 0\) points outside circle

\(F(x, y) < 0\) points inside circle
The Midpoint Test

\[ (x_p, y_p) \]

\[ M = (x_p + 1, y_p - \frac{1}{2}) \]

The sign of \( F(M) \) gives the answer as to which pixel, E or SE, to draw.
Formulating an Algorithm

Let \( d \) be a decision variable which makes the midpoint test. Then the test to decide which pixel to draw is just

\[
\text{if } (d < 0) \\
\text{then} \\
\quad // \text{ the midpoint is inside the circle} \\
\quad // \text{ the circle passes closer to the upper pixel} \\
\quad \text{draw the E pixel} \\
\text{else} \\
\quad // \text{ the midpoint is outside the circle} \\
\quad // \text{ the circle passes closer to the lower pixel} \\
\quad \text{draw the SE pixel}
\]
Formulating an Algorithm

```plaintext
MidpointCircle (radius, x_center, y_center)

x = 0;  y = radius;
CirclePoints (x_center, y_center, x, y);
while (y > x) {
    if (d < 0) // the midpoint is inside the circle
        // the circle is closer to E pixel
        x = x + 1;
        CirclePoints (x_center, y_center, x, y);
    else // the midpoint is outside the circle
        // the circle is closer to SE pixel
        x = x + 1;  y = y - 1;
        CirclePoints (x_center, y_center, x, y);
end
```
Formulating an Algorithm

CirclePoints \((a, b, x, y)\)

\[
\begin{align*}
\text{DrawPoint} & \ (a + x, b + y); \\
\text{DrawPoint} & \ (a + x, b - y); \\
\text{DrawPoint} & \ (a - x, b + y); \\
\text{DrawPoint} & \ (a - x, b - y); \\
\text{DrawPoint} & \ (a + y, b + x); \\
\text{DrawPoint} & \ (a + y, b - x); \\
\text{DrawPoint} & \ (a - y, b + x); \\
\text{DrawPoint} & \ (a - y, b - x); \\
\end{align*}
\]
Making the Algorithm Incremental

\[(x_p, y_p), (x_p + 1, y_p), (x_p + 2, y_p)\]

\[M_1 = (x_p + 1, y_p - \frac{1}{2})\]
\[M_2 = (x_p + 2, y_p - \frac{1}{2})\]
\[M_3 = (x_p + 2, y_p - \frac{3}{2})\]
Incremental Formulation

\[ d_{first} = F(M_1) = F(x_p + 1, y_p - \frac{1}{2}) \]
\[ = (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - r^2 \]

If we choose E after this computation, we must compute \( F(M_2) \) next.

What is the relationship between

\[ d_{first} = F(M_1) \] and \( F(M_2) \)
Notice that if we consider moving East:

\[ d_{\text{first}} = (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - r^2 \]
\[ d_{\text{next}} = (x_p + 2)^2 + (y_p - \frac{1}{2})^2 - r^2 \]

(since \( d_{\text{next}} = F(M_2) \)) so that we can compute

\[ d_{\text{next}} - d_{\text{first}} = 2x_p + 3 \]

Or just

\[ d_{\text{next}} = d_{\text{first}} + (2x_p + 3) \]
Incremental Formulation

Notice that if we consider moving Southeast:

\[ d_{\text{first}} = (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - r^2 \]
\[ d_{\text{next}} = (x_p + 2)^2 + (y_p - \frac{3}{2})^2 - r^2 \]

(since \( d_{\text{next}} = F(M_3) \)) so that we can compute

\[ d_{\text{next}} - d_{\text{first}} = 2x_p - 2y_p + 5 \]

Or just

\[ d_{\text{next}} = d_{\text{first}} + (2x_p - 2y_p + 5) \]
Initial Condition

The first point lies on the circle at point (0, r). The first midpoint is thus

\[ F(1, r - \frac{1}{2}) \]

The starting value for the test variable is

\[ d_{\text{start}} = (1)^2 + (r - \frac{1}{2})^2 - r^2 = (\frac{5}{4} - r) \]
MidpointCircle \( (r, xc, yc) \)
\[
x = 0; \ y = r; \ d = \frac{5}{4} - r;
\]
\[
\text{CirclePoints} \ (xc, yc, x, y);
\]
while \( y > x \) do
\[
\text{if } (d < 0)
\]
\[
d = d + 2x + 3;
\]
\[
x++;\]
\[
\text{else}
\]
\[
d = d + 2(x - y) + 5;
\]
\[
x++; \ y--;
\]
\[
\text{CirclePoints} \ (xc, yc, x, y);
\]
end
end
Second Order Differences

Notice that the increments are functions of the point of evaluation \((x, y)\) rather than simple constants:

East: \[ d_{next} = d_{first} + (2x_p + 3) \]
Southeast: \[ d_{next} = d_{first} + (2x_p - 2y_p + 5) \]

Key idea: incremental approach can be applied again, to the increments themselves
Second Order Differences (Four cases)

East (current iteration/point of evaluation):

- East increment

\[ \Delta_{E\text{ first}} \quad (x_p, y_p) = 2x_p + 3 \]

\[ \Delta_{E\text{ next}} \quad (x_p + 1, y_p) = 2(x_p + 1) + 3 \]

\[ \Delta_{E\text{ next}} = \Delta_{E\text{ first}} + 2 \]

- Southeast increment:

\[ \Delta_{SE\text{ first}} \quad (x_p, y_p) = 2x_p - 2y_p + 5 \]

\[ \Delta_{SE\text{ next}} \quad (x_p + 1, y_p) = 2(x_p + 1) - 2y_p + 5 \]

\[ \Delta_{SE\text{ next}} = \Delta_{SE\text{ first}} + 2 \]
Second Order Differences

Southeast (current iteration/point of evaluation):

• East increment

\[ \Delta_{E \text{ first}} (x_p, y_p) = 2x_p + 3 \]
\[ \Delta_{E \text{ next}} (x_p + 1, y_p - 1) = 2(x_p + 1) + 3 \]

\[ \Delta_{E \text{ next}} = \Delta_{E \text{ first}} + 2 \]

• Southeast increment:

\[ \Delta_{SE \text{ first}} (x_p, y_p) = 2x_p - 2y_p + 5 \]
\[ \Delta_{SE \text{ next}} (x_p + 1, y_p - 1) = 2(x_p + 1) - 2(y_p - 1) + 5 \]

\[ \Delta_{SE \text{ next}} = \Delta_{SE \text{ first}} + 4 \]
An Integer Algorithm

Let \( h = d - \frac{1}{4} \) so that \( d = h + \frac{1}{4} \)

Since \( d_{\text{start}} = \frac{5}{4} - r \) by substitution \( h_{\text{start}} + \frac{1}{4} = \frac{5}{4} - r \)

and we get \( h_{\text{start}} = 1 - r \)

Now, if the original midpoint test is \((d < 0)\)

The new midpoint test becomes \((h < -\frac{1}{4})\)

But since \( h \) starts as an integer and is only incremented by integers, the same test for \( h \) will hold:

\((h < 0)\)
The Final Algorithm

MidpointCircle \((r, xc, yc)\)

\[
x = 0; \quad y = r; \quad h = 1 - r; \\
deltaE = 3; \quad \text{deltaSE} = 2*r + 5; \\
\text{CirclePoints} \ (xc, yc, x, y); \\
\text{while} \ (y > x) \ \text{do} \\
\quad \text{if} \ (h < 0) \\
\quad \quad h = h + \deltaE; \\
\quad \quad \deltaE = \deltaE + 2; \\
\quad \quad \text{deltaSE} = \text{deltaSE} + 2; \\
\quad \quad x++; \\
\]
else
    h = h + deltaSE;
    deltaE = deltaE + 2;
    deltaSE = deltaSE + 4;
    x++;  y++;
    CirclePoints (xc, yc, x, y);
end
end
Drawing Ellipses

Using Polar Coordinates

\[ x = x_c + r_x \cos \theta \]
\[ y = y_c + r_y \sin \theta \]

Implicit

\[ f(x,y)_{\text{ellipse}} = r_x^2 (x - x_c)^2 + r_y^2 (y - y_c)^2 - r_x r_y \]

Exploit Symmetry

Midpoint Ellipse Algorithm
Hearn Page 109
Bresenham approach is typically used for low-level scan conversion of Lines, Circles & Ellipses.

In principle, any algebraic curve can be expressed in the Bresenham style.

1. Measure error to actual curve (make decision)
2. Find integer form of error
3. Find incremental update of error criteria

In practice, curve beyond conics are drawn as a series of short Bresenham straight lines.
CS335
Graphics and Multimedia

2D Drawings: Splines
2D Freeform Curves or Splines
Splines

A typical free form curve designed to pass through or near a sequence of points.

Splines are parameterized curves that generalize linear interpolation of straight lines to higher powers of interpolation parameter.
Linear interpolation (1st order Spline)

\[
\text{start : } \vec{x}_1 = (x_1, y_1, z_1, \ldots)
\]
\[
\text{end : } \vec{x}_2 = (x_2, y_2, z_2, \ldots)
\]
\[
x(t) = x_1 + t(x_2 - x_1)
\]
\[
= (1 - t)x_1 + tx_2
\]

where: \( x(0) = x_1 \) and \( x(1) = x_2 \)

\[G^0\]: geometric continuity: the endpoints coincide
Quadratic interpolation

\[ x(t) = a + bt + ct^2 \]

\[ = A(1 - t)^2 + Bt(1 - t) + Ct^2 \]

matches derivatives

but 2nd derivative is choppy

\( G^1: \) tangents have the same slope
Cubic Spline & Interpolation

\[ \ddot{x}(t) = \ddot{A}(1 - t)^3 + \ddot{B}t(t - 1)^2 + \ddot{C}t^2(t - 1) + \ddot{D}t^3 \]
\[ = \vec{\alpha} + \vec{\beta} t + \vec{\gamma} t^2 + \vec{\delta} t^3 \]

\( C^1 \): first derivative on both curves match at join point

Examples:
- Natural Cubic Spline
- Hermite
- Bezier
- B-spline

The "speed" is the same before and after
Representing Curves

- Cubic curve (to maintain $C^1$ continuity)

$$x = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y = a_y t^3 + b_y t^2 + c_y t + d_y$$

- Matrix Representation

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} a_x & a_y \\ b_x & b_y \\ c_x & c_y \\ d_x & d_y \end{bmatrix}$$
Solving for Coefficients

- Continuity – $C^0$, $C^1$, etc.

*Hermite Specification*
The Gradient of a Cubic Curve

\[
\frac{dx}{dt} = 3a_x t^2 + 2b_x t + c_x + 0
\]

\[
\frac{dy}{dt} = 3a_y t^2 + 2b_y t + c_y + 0
\]

Matrix notion:

\[
\begin{bmatrix}
\frac{dx}{dt} & \frac{dy}{dt}
\end{bmatrix} = \begin{bmatrix} 3t^2 & 2t^1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_x & a_y \\ b_x & b_y \\ c_x & c_y \\ d_x & d_y \end{bmatrix}
\]
The Hermite Specification as a Matrix Equation

\[
\begin{bmatrix}
  x_1 & y_1 \\
  x_2 & y_2 \\
  \frac{dx_1}{dt} & \frac{dy_1}{dt} \\
  \frac{dx_2}{dt} & \frac{dy_2}{dt}
\end{bmatrix}
\begin{bmatrix}
  0 & 0 & 0 & 1 \\
  1 & 1 & 1 & 1 \\
  0 & 0 & 1 & 0 \\
  3 & 2 & 1 & 0
\end{bmatrix}
= 
\begin{bmatrix}
  a_x & a_y \\
  b_x & b_y \\
  c_x & c_y \\
  d_x & d_y
\end{bmatrix}
\]
Solving the Hermite Coefficients

Cubic Hermite Spline Equation:

\[
\begin{bmatrix}
    x \\ y
\end{bmatrix} = 
\begin{bmatrix}
    t^3 & t^2 & t & 1
\end{bmatrix}
M_{\text{Hermite}} G_{\text{Hermite}}
\]
Another Way to Think About Splines

- Cubic Hermite Spline Equation

\[
\begin{bmatrix}
  x \\
  y
\end{bmatrix}
= \begin{bmatrix}
  t^3 & t^2 & t & 1
\end{bmatrix} M_{\text{Hermite}} G_{\text{Hermite}}
\]

- After reordering multiplications

\[
\begin{bmatrix}
  x \\
  y
\end{bmatrix}
= \begin{bmatrix}
  2t^3 - 3t^2 + 1 \\
  -2t^3 + 3t^2 \\
  t^3 - 2t^2 + t \\
  t^3 - t^2
\end{bmatrix}^T \begin{bmatrix}
  p_1 \\
  p_2 \\
  \nabla p_1 \\
  \nabla p_2
\end{bmatrix}
= f_1(t) p_1 + f_2(t) p_2 + f_3(t) p_1' + f_4(t) p_2'
Hermite Blending Functions
Beziers Spline

\[ \nabla p_1 = 3(p_2 - p_1) \\
\nabla p_2 = 3(p_3 - p_4) \]
Converting from Bezier to Hermite

Since

\[
\begin{bmatrix}
  x_1 & y_1 \\
  x_2 & y_2 \\
  \frac{dx_1}{dt} & \frac{dy_1}{dt} \\
  \frac{dx_2}{dt} & \frac{dy_2}{dt}
\end{bmatrix}
= \begin{bmatrix}
  1 & 0 & 0 & 0 \\
  0 & 0 & 0 & 1 \\
  -3 & 3 & 0 & 0 \\
  0 & 0 & -3 & 3
\end{bmatrix}
\begin{bmatrix}
  x_1 & y_1 \\
  x_x & y_2 \\
  x_3 & y_3 \\
  x_4 & y_4
\end{bmatrix}
\]

Substituting gives:

\[
\begin{bmatrix}
a_x & a_y \\
b_x & b_y \\
c_x & c_y \\
d_x & d_y
\end{bmatrix}
= M_{\text{Hermite}} T
\]
Blending Functions for Bezier Splines

\[ p(t) = \begin{bmatrix} (1-t)^3 \\ 3t(1-t)^2 \\ 3t^2(1-t) \\ t^3 \end{bmatrix}^T \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} \]

- \[ B_1 \rightarrow (1-t^3) \]
- \[ B_2 \rightarrow (1-t)^2 \cdot 3t \]
- \[ B_3 \rightarrow (1-t) \cdot 3t^2 \]
- \[ B_4 \rightarrow t^3 \]
Beziers Curve Properties

Blending functions always

• Sum to 1 (partition of unity)
• Are non-negative
• Satisfy $1 - B_2 - B_3 - B_4 = B_1$

Curve always

• Passes inside the convex hull of the control points
• Goes through the two endpoints
• Is tangent to the control polygon at the endpoints
Convex Hull Property
Drawing Spline Curves

\[ [x(t), y(t)] \text{ for } t \text{ between 0 and 1 gives all the points on the curve:} \]

\[
x(\frac{1}{2}) = (1 - \frac{1}{2})^3 P_{1x} + 3 \frac{1}{2} (1 - \frac{1}{2})^2 P_{2x} + 3 \frac{1}{2}^2 (1 - \frac{1}{2}) P_{3x} + \frac{1}{2}^3 P_{4x}
\]

\[
= \frac{7}{8} P_{1x} + \frac{3}{8} P_{2x} + \frac{3}{8} P_{3x} + \frac{1}{8} P_{4x}
\]
Displaying Cubic Curves

- Divide interval $[0, 1]$ into $n$ even pieces
- Evaluate the curve at each value of $t$ within the interval
- Draw line segments connecting the points

What is the cost of displaying curves this way?

$$x(t) = (1 - t^3)P_{1x} + 3t(1 - t)^2 P_{2x} + 3t^2(1 - t)P_{3x} + t^3 P_{4x}$$

An incremental approach is possible…
Forward Differencing

The incremental approach used by the Midpoint algorithm for lines is a form of **forward differencing**

Consider the following linear equation:

\[ \begin{align*}
\Delta_1 & \left\{ 
\begin{array}{l}
x(t) = at + b \\
x(t + \varepsilon) = a(t + \varepsilon) + b
\end{array}
\right.
\end{align*} \]

\[ \Delta_1 = x(t + \varepsilon) - x(t) = a(t + \varepsilon) + b - (at + b) = a \varepsilon \]
Forward Differencing

\[ x(t) + \Delta_1 = x(t + \varepsilon) \]
\[ \Delta_1 = a\varepsilon \]

In this linear case (polynomial of degree 1), the forward difference applied once gives a constant term which can be used to compute successive values of \( x(t) \).

For a \textbf{cubic curve}, we have a general form which is a cubic equation, and calculating a single “difference” will \textit{not} reduce the equation immediately to a constant.
Forward Differencing

\[ x(t) = at^3 + bt^2 + ct + d \]
\[ x(t + \varepsilon) = a(t + \varepsilon)^3 + b(t + \varepsilon)^2 + c(t + \varepsilon) + d \]
\[ \Delta_1 = x(t + \varepsilon) - x(t) \]

By expanding the difference equation and simplifying we get
\[ \Delta_1 = (3a\varepsilon)t^2 + (3a\varepsilon^2 + 2b\varepsilon)t + (a\varepsilon^3 + b\varepsilon^2 + c\varepsilon) \]
Cubic Splines: Forward Differencing

\[ \Delta_1 = (3a\varepsilon)t^2 + (3a\varepsilon^2 + 2b\varepsilon)t + (a\varepsilon^3 + b\varepsilon^2 + c\varepsilon) \]

This difference is the **first order** difference, which reduces the degree of the cubic equation by 1, i.e., it is now a quadratic.

The second order difference can be computed by applying the same differencing technique to the equation for \( \Delta_1 \):

\[ \Delta_1(t) = (3a\varepsilon)t^2 + (3a\varepsilon^2 + 2b\varepsilon)t + (a\varepsilon^3 + b\varepsilon^2 + c\varepsilon) \]
\[ \Delta_1(t + \varepsilon) = (3a\varepsilon)(t + \varepsilon)^2 + (3a\varepsilon^2 + 2b\varepsilon)(t + \varepsilon) + (a\varepsilon^3 + b\varepsilon^2 + c\varepsilon) \]
Second-Order Differencing

\[ \Delta_2 = \Delta_1(t + \varepsilon) - \Delta_1(t) \]
\[ = 6a\varepsilon^2 t + (6a\varepsilon^3 + 2b\varepsilon^2) \]
\[ \Delta_1 = (3a\varepsilon)t^2 + (3a\varepsilon^2 + 2b\varepsilon)t + (a\varepsilon^3 + b\varepsilon^2 + c\varepsilon) \]

We wish to evaluate points on the curve for these values of \( t \):
\[ \{0, \varepsilon, 2\varepsilon, 3\varepsilon, ..., 1\} \]

Using the current differencing scheme (first and second-order differencing), we get the following algorithm for computing points on the curve:
Computing Curve Points

\[ \varepsilon = \frac{1}{n}; \quad t = 0 \]

\[ x(t=0) = a_x t^3 + b_x t^2 + c_x t + d_x \]

\[ = d_x \]

\[ \Delta_1(t=0) = (3a_x \varepsilon)t^2 + (3a_x \varepsilon^2 + 2b_x \varepsilon)t + (a_x \varepsilon^3 + b_x \varepsilon^2 + c_x \varepsilon) \]

\[ = (a_x \varepsilon^3 + b_x \varepsilon^2 + c_x \varepsilon) \]

\[ \Delta_2(t=0) = 6a_x \varepsilon^2 t + (6a_x \varepsilon^3 + 2b_x \varepsilon^2) \]

\[ = (6a_x \varepsilon^3 + 2b_x \varepsilon^2) \]
Computing Curve Points

DrawPoint((int)x,(int)y);
    // also must compute
    // the y-coordinate
for (i=0; i < n; i++)
    t = t + ε
    x = x + Δ₁
    Δ₁ = Δ₁ + Δ₂
    Δ₂ = 6aε²t + (6aε³ + 2bε²)
    DrawPoint((int)x,(int)y);
Third-Order Differencing

\[ \Delta_2 = 6ae^2t + (6ae^3 + 2be^2) \]
\[ \Delta_2(t + \varepsilon) = 6ae^2(t + \varepsilon) + (6ae^3 + 2be^2) \]

\[ \Delta_3 = \Delta_2(t + \varepsilon) - \Delta_2(t) \]
\[ = 6ae^3 \]

Now we have an incremental formulation that uses only simple additions in the loop where curve points are computed:
Algorithm: 3rd Order Differencing

\[ \varepsilon = \frac{1}{n} ; \quad t = 0 ; \quad x = d_x ; \quad y = d_y \]

\[ \Delta_{1x} = (a_x \varepsilon^3 + b_x \varepsilon^2 + c_x \varepsilon) \quad \Delta_{1y} = (a_y \varepsilon^3 + b_y \varepsilon^2 + c_y \varepsilon) \]

\[ \Delta_{2x} = (6a_x \varepsilon^3 + 2b_x \varepsilon^2) \quad \Delta_{2y} = (6a_y \varepsilon^3 + 2b_y \varepsilon^2) \]

\[ \Delta_{3x} = 6a_x \varepsilon^3 \quad \Delta_{3y} = 6a_y \varepsilon^3 \]

\[ \text{DrawPoint}((\text{int})x, (\text{int})y); \]

for (i=0; i < n; i++)

\[ x = x + \Delta_{1x} \quad y = y + \Delta_{1y} \]

\[ \Delta_{1x} = \Delta_{1x} + \Delta_{2x} \quad \Delta_{1y} = \Delta_{1y} + \Delta_{2y} \]

\[ \Delta_{2x} = \Delta_{2x} + \Delta_{3x} \quad \Delta_{2y} = \Delta_{2y} + \Delta_{3y} \]

\[ \text{DrawPoint}((\text{int})x, (\text{int})y); \]
A Few Things to Consider

We have an incremental, fast algorithm for evaluating the points on a cubic spline, where the curve equation is of the form

$$\alpha(t) = at^3 + bt^2 + ct + d$$

But the Bezier curve as we have developed it is of the form

$$\alpha_B(t) = (1 - t^3)\vec{P}_1 + 3t(1 - t)^2 \vec{P}_2 + 3t^2(1 - t)\vec{P}_3 + t^3\vec{P}_4$$

$$x(t) = (1 - t^3)P_{1x} + 3t(1 - t)^2 P_{2x} + 3t^2(1 - t)P_{3x} + t^3P_{4x}$$

$$y(t) = (1 - t^3)P_{1y} + 3t(1 - t)^2 P_{2y} + 3t^2(1 - t)P_{3y} + t^3P_{4y}$$

How can we formulate the incremental algorithm for Bezier curves?
Regrouping

We can take the original form of the Bezier curve

\[ \alpha_B(t) = (1 - t^3)\vec{P}_1 + 3t(1-t)^2\vec{P}_2 + 3t^2(1-t)\vec{P}_3 + t^3\vec{P}_4 \]

And regroup terms so that it is rewritten as a grouped cubic:

\[ \alpha_B(t) = (-\vec{P}_1 + 3\vec{P}_2 - 3\vec{P}_3 + \vec{P}_4)t^3 \]

\[ + (3\vec{P}_1 - 6\vec{P}_2 + 3\vec{P}_3)t^2 + (-3\vec{P}_1 + 3\vec{P}_2)t + \vec{P}_1 \]

In this form,

\[ a = (-\vec{P}_1 + 3\vec{P}_2 - 3\vec{P}_3 + \vec{P}_4) \]

\[ b = (3\vec{P}_1 - 6\vec{P}_2 + 3\vec{P}_3) \]

\[ c = (-3\vec{P}_1 + 3\vec{P}_2) \]

\[ d = \vec{P}_1 \]
Incremental Bezier

Using the mapping of the control points of the Bezier to the coefficients of the incremental cubic, we obtain the following equations:

\[ a = (-\vec{P}_1 + 3\vec{P}_2 - 3\vec{P}_3 + \vec{P}_4) \]
\[ b = (3\vec{P}_1 - 6\vec{P}_2 + 3\vec{P}_3) \]
\[ c = (-3\vec{P}_1 + 3\vec{P}_2) \]
\[ d = \vec{P}_1 \]

\[ x = a = \vec{P}_{1x} \]
\[ \Delta_{1x} = (a_x \varepsilon^3 + b_x \varepsilon^2 + c_x \varepsilon) \]

\[ \Delta_{1x} = (-\vec{P}_{1x} + 3\vec{P}_{2x} - 3\vec{P}_{3x} + \vec{P}_{4x})\varepsilon^3 + \]
\[ (3\vec{P}_{1x} - 6\vec{P}_{2x} + 3\vec{P}_{3x})\varepsilon^2 + (-3\vec{P}_{1x} + 3\vec{P}_{2x})\varepsilon \]

The other equations can be similarly converted
import java.awt.*;
import java.applet.Applet;

public class Bezier {
    private int xpoints[], ypoints[];
    private int limit = 4;
    private int count;
    private int width = 10;
    private int height = 10;
    private int intervals = 5;

    public Bezier () {
        xpoints = new int[limit];
        ypoints = new int[limit];
        count = 0;
    }
}
public void paintCurve ( Graphics g ) {
    double x, y, xold, yold, A, B, C;
    double t1, t2, t3;
    double deltax1, deltax2, deltax3;
    double deltay1, deltay2, deltay3;
    if (count != limit)
        return;

    // Initialize values for fast Bezier
    t1 = 1.0/intervals;
    t2 = t1*t1;
    t3 = t2*t1;
    x = xpoints[0];
    y = ypoints[0];
    xold = x;
    yold = y;
}
Drawing the Curve: Initializations

// set up deltas for the x-coords
B = (3*xpoints[0] - 6*xpoints[1] + 3*xpoints[2]);
C = (-3*xpoints[0] + 3*xpoints[1]);
deltax1 = A*t3 + B*t2 + C*t1;
deltax2 = 6*A*t3 + 2*B*t2;
deltax3 = 6*A*t3;
// set up deltas for the y-coords
A = (-ypoints[0] + 3*ypoints[1] -
     3*ypoints[2] + ypoints[3]);
B = (3*ypoints[0] - 6*ypoints[1] +
     3*ypoints[2]);
C = (-3*ypoints[0] + 3*ypoints[1]);
deltay1 = A*t3 + B*t2 + C*t1;
deltay2 = 6*A*t3 + 2*B*t2;
deltay3 = 6*A*t3;
for (int i = 0; i < intervals; i++) {
    x += deltax1;
    deltax1 += deltax2;
    deltax2 += deltax3;
    
    y += deltay1;
    deltay1 += deltay2;
    deltay2 += deltay3;
    
    g.drawLine ((int)xold, (int)yold, (int)x, (int)y);
    xold = x;
    yold = y;
} // end of for loop
} // end of paintCurve()
public void drawPolyline ( Graphics g )
{
    for (int i = 0; i < (count-1); i++) {
        g.fillOval (xpoints[i]-(width/2),
                    ypoints[i]-(height/2),
                    width, height);
        g.drawLine (xpoints[i], ypoints[i],
                    xpoints[i+1], ypoints[i+1]);
    }

    g.fillOval (xpoints[count-1]-(width/2),
                ypoints[count-1]-(height/2),
                width, height);
}
public void addPoint (int x, int y)
{
    if (count >= limit)
        return;
    xpoints[count] = x;
    ypoints[count] = y;
    count++;
}

public void resetCurve ()
{
    count = 0;
}

public void setInterval (int i)
{
    intervals = i;
}
Multiple Connected Curve Segments

One long curve can be formed from multiple connected curve segments

Principal of locality: change in the position of a single control point will affect at most 2 curve segments. This is important for efficient interactive manipulation of the curves
Smoothness at Join Points

\( G^0 \) geometric continuity: the endpoints coincide

\( G^1 \) tangents have the same slope

\( C^1 \) first derivative on both curves match at join point

\( C^n \) nth derivative on both curves match at join point
Smoother Joins

Bezier splines can be joined to form chains, but the join points guarantee only geometric ($G$) continuity, not derivative ($C$) continuity. Thus they are not as smooth in the derivative sense as we might like.

Other Choices for Curves:

- Natural cubic splines
- Hermite curves
- Non-rational parametric cubic B-splines

B-Splines

- B-spline: Basis-spline - curve is represented with basis functions
- Uniform: curve joins are equally spaced in parameter space
- Non-rational: basis functions are not constrained to be rational
- Parametric cubic: basis functions are cubic functions of a parameter
B-Splines

Curve segments overlap by sharing 3 control points (out of the four that are required to define a curve segment). This guarantees very smooth join points, but complicates the display process slightly.

**Principle of Locality**: how many curve segments are affected (at most) when a control point is moved?
B-Splines: Single Curve Segment

\[ \alpha_{B\text{-spline}}(t) = \mathbf{T} \mathbf{M}_{B\text{-spline}} \mathbf{G} \]

\[
= \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \vec{P}_{1x} & \vec{P}_{1y} \\ \vec{P}_{2x} & \vec{P}_{2y} \\ \vec{P}_{3x} & \vec{P}_{3y} \\ \vec{P}_{4x} & \vec{P}_{4y} \end{bmatrix}
\]

\[ \alpha_{B\text{-spline}}(t) = (1-t)^3 \vec{P}_1 + (3t^3 - 6t^2 + 4) \vec{P}_2 + (-3t^3 + 3t^2 + 3t + 1) \vec{P}_3 + t^3 \vec{P}_4 \]
Bezien vs. B-spline Curve Definitions

\[ \alpha_{B-spline}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \vec{P}_{1x} & \vec{P}_{1y} \\ \vec{P}_{2x} & \vec{P}_{2y} \\ \vec{P}_{3x} & \vec{P}_{3y} \\ \vec{P}_{4x} & \vec{P}_{4y} \end{bmatrix} \]

\[ \alpha_{Bezier}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \vec{P}_{1x} & \vec{P}_{1y} \\ \vec{P}_{2x} & \vec{P}_{2y} \\ \vec{P}_{3x} & \vec{P}_{3y} \\ \vec{P}_{4x} & \vec{P}_{4y} \end{bmatrix} \]
Blending Functions

Bezier Blending Functions

\[
\begin{align*}
B_1 & \rightarrow (1 - t^3) \\
B_2 & \rightarrow (1 - t)^2 3t \\
B_3 & \rightarrow (1 - t)3t^2 \\
B_4 & \rightarrow t^3
\end{align*}
\]

B-spline Blending Functions

\[
\begin{align*}
B_1 & \rightarrow (1 - t^3) \\
B_2 & \rightarrow 3t^3 - 6t^2 + 4 \\
B_3 & \rightarrow -3t^3 + 3t^2 + 3t + 1 \\
B_4 & \rightarrow t^3
\end{align*}
\]
Control Points and the Parameter

\[ Q_0 = P_0, P_1, P_2, P_3 \]

\[ Q_1 = P_1, P_2, P_3, P_4 \]

\[ Q_2 = P_2, P_3, P_4, P_5 \]
Gains and Losses with B-Splines

Gains:
- Locality
- Compact form for multiple segments
- $C_2$ continuity
- Blending function/convex hull properties

Losses:
- Control over exact position of curve (interpolation vs. approximation)
Additional Topics to Study

• Knot position and control
• Approximation vs. Interpolation
• Inserting/deleting control points
• Other blending functions
Summary

- Continuity of free-form curves ($G^0$, $G^1$, $C^0$, $C^1$, $C^2$...)
- Cubic Curves (Splines)
  - Hermite
    - Matrix representation
    - Blending
  - Bezier
  - B-Spline