CS335 Fall 2007
Graphics and Multimedia

2D Drawings: Lines
Digital Concepts of Drawing in Raster Arrays

PIXEL is a single array element at (x,y)

- No smaller drawing unit exists

\[P(x,y) \]
Scan Conversion

Pixel Value = 1 bit, 8 bit, 24 bit, ….

= address into hardware look up table to determine display color, intensity.

Pixel based Geometry

Points, lines, circles, conics, curves, splines, polygons, shaded polygons, text fonts & icons.

all basically reduce to scan conversion problem:

FIND Digital algorithms for continuous geometric concepts
Drawing Lines

From \((x_1, y_1)\) to \((x_2, y_2)\)

Equation:

\[y = mx + b \]

\[m = \frac{(y_2 - y_1)}{(x_2 - x_1)} \]

\[b = y_1 - m \times x_1 \]

Code:*

```plaintext
compute -- m, b
for x=x1 to x2, step 1
    y = m*x + b
    pixel( x, round(y), color)
loop
```
DDA Algorithm

(Digital Differential Analyzer)
[DDA avoids the multiple by slope m]

Equation:

$x_{k+1} = x_k + 1$
$y_{k+1} = y_k + m$

if slope $|m| > 1$

$y_{k+1} = y_k + 1$
$x_{k+1} = x_k + 1/m$

compute m (assume $|m| < 1$)

$y = y_1, x = x_1$

pixel(round(x_1), round(y_1), color)

for $x=x_1$ to x_2, step 1

$x = x + 1$
$y = y + m$
pixel(x, round(y), color)

end
DDA Algorithm

(Digital Differential Analyzer)
[avoid the float multiple by slope m]

slope m, y – floats

Problems:
1. Necessary to perform float addition
2. Necessary to have float representation
3. Necessary to perform -- `round()`

Float representations/operations are more expensive than integer operations. We would like to avoid them if possible.
The Midpoint Algorithm (Bresenham’s Algorithm)

- Scan-converts lines
- Method is **incremental**
- Uses only integer arithmetic

Assume slope of line to be drawn is $0 \leq m \leq 1$

Lower-left endpoint: (x_0, y_0)

Upper-right endpoint: (x_1, y_1)
The Midpoint Algorithm

Key idea: at each step, decide which pixel (E or NE) is closest to the line. Choose that pixel and draw it.
The Implicit Line Equation

If M lies above the line, draw pixel E
If M lies below the line, draw pixel NE

$\left(x_p, y_p\right)$

Diagram with points and line
Implicit Lines

\[F(x, y) = ax + by + c = 0 \]

Let \(dy = y_1 - y_0 \)
\[dx = x_1 - x_0 \]
\[m = \frac{dy}{dx} \]

The slope-intercept form gives

\[y = \frac{dy}{dx} x + B \]
Implicit Lines

Now we can convert the slope-intercept form to the implicit form via a few substitutions and manipulations:

\[dx \; y = dy \; x + dx \; B \]
\[0 = dy \; x - dx \; y + dx \; B \]

Which is in the form \[0 = ax + by + c \] by letting
\[a = dy \]
\[b = -dx \]
\[c = Bdx \]
Implicit Lines

Now we can verify an important property of this representation:

\[F(x, y) = 0 \quad \text{for points on the line} \]
\[F(x, y) > 0 \quad \text{for points below the line} \]
\[F(x, y) < 0 \quad \text{for points above the line} \]

Example:
Implicit Lines

Conclusion: the sign of $F(x,y)$ reveals the location of (x,y) with respect to the line represented by F

Idea: Check the midpoint at each iteration to determine which pixel, E or NE, is closest to the line.

Use the implicit equation of the line F to check
The sign of $F(M)$ gives the answer as to which pixel, E or NE, to draw

\[M = (x_p + 1, y_p + \frac{1}{2}) \]
Formulating an Algorithm

Let \(d \) be a decision variable which makes the midpoint test. Then the test to decide which pixel to draw is just

```
if (d > 0)
    then
        // the midpoint is below the line
        // the line passes closer to the upper pixel
        draw the NE pixel
    else
        // the midpoint is above the line
        // the line passes closer to the lower pixel
        draw the E pixel
```
Making the Algorithm Incremental

\[M_1 = (x_p + 1, y_p + \frac{1}{2}) \]
\[M_2 = (x_p + 2, y_p + \frac{1}{2}) \]
\[M_3 = (x_p + 2, y_p + \frac{3}{2}) \]
Incremental Formulation

\[d_{first} = F(M_1) = F(x_p + 1, y_p + \frac{1}{2}) \]
\[= a(x_p + 1) + b(y_p + \frac{1}{2}) + c \]

If we choose E after this computation, then we must compute \(F(M_2) \) next.

What is the relationship between

\[d_{first} = F(M_1) \text{ and } F(M_2) \]
Notice that

\[d_{\text{first}} = a(x_p + 1) + b(y_p + \frac{1}{2}) + c \]

\[d_{\text{next}} = a(x_p + 2) + b(y_p + \frac{1}{2}) + c \]

(since \(d_{\text{next}} = F(M_2) \)) so that we can compute

\[d_{\text{next}} = d_{\text{first}} + a \]

which is just

\[d_{\text{next}} = d_{\text{first}} + dy \]
Choosing E vs. NE

When we compute $F(M_1)$ and draw the E pixel, $F(M_2)$ can be obtained from a single addition operation via the equation

$$F(M_2) = F(M_1) + dy$$

What if we are drawing the NE pixel instead of the E pixel?

$$d_{\text{first}} = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$$

$$d_{\text{next}} = a(x_p + 2) + b(y_p + \frac{3}{2}) + c$$

which gives this incremental computation of $F(M_3)$

$$d_{\text{next}} = d_{\text{first}} + (dy - dx)$$
A Starting Point

What about a starting point? The first midpoint to be computed is

$$F(x_0 + 1, y_0 + \frac{1}{2})$$

Thus the starting value for the test variable is

$$d_{\text{start}} = a(x_0 + 1) + b(y_0 + \frac{1}{2}) + c$$

$$(x_p, y_p)$$

How can we simplify this?
Efficiencies

\[d_{\text{start}} = a(x_0 + 1) + b(y_0 + \frac{1}{2}) + c \]
\[= ax_0 + by_0 + c + a + \frac{b}{2} \]
\[= F(x_0, y_0) + a + \frac{b}{2} \]

Now observe that since the point \(F(x_0, y_0) \) is on the line:

\[F(M_{\text{start}}) = a + \frac{b}{2} = dy - dx / 2 \]
We can maintain and test the value of $2F(M)$ to make it integral

\[d_{\text{start}} = 2F(M_{\text{start}}) = 2dy - dx \]

If we move E, the increment to maintain the midpoint is multiplied by 2:

\[d_{\text{next}} = d_{\text{first}} + 2dy \]

If we move NE, the increment to maintain the midpoint is multiplied by 2:

\[d_{\text{next}} = d_{\text{first}} + 2(dy - dx) \]
The Algorithm

MidpointLine (x0, y0, x1, y1)

// assumes slope is between 0 and 1
// and that (x0, y0) is leftmost point
dx = x1-x0;
dy = y1-y0;
d = 2dy-dx;
incrE = 2dy;
incrNE = 2(dy-dx);
x = x0;
y = y0;
WritePixel(x,y);
while (x < x1) do
 if (d <= 0)
 d = d + incrE
 x = x + 1
 else
 d = d + incrNE
 x = x + 1
 y = y + 1
 WritePixel (x, y)
 end
end
Summary of Concepts

- Implicit representation of a line
- Incremental algorithm for more efficient computation
- Integer algorithm by introducing harmless scale factor
- Logic must be added to handle all line orientations