
1

© 1992-2007 Pearson Education, Inc. All rights reserved.

99
Object-Oriented

Programming:
Inheritance

2

© 1992-2007 Pearson Education Inc. All rights reserved.

Say not you know another entirely, till you have divided an
inheritance with him.

— Johann Kasper Lavater

This method is to define as the number of a class the class of
all classes similar to the given class.

— Bertrand Russell

Good as it is to inherit a library, it is better to collect one.
— Augustine Birrell

Save base authority from others' books.
— William Shakespeare

3

© 1992-2007 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

How inheritance promotes software reusability.
The notions of superclasses and subclasses.
To use keyword extends to create a class that
inherits attributes and behaviors from another class.
To use access modifier protected to give subclass
methods access to superclass members.
To access superclass members with super.
How constructors are used in inheritance
hierarchies.
The methods of class Object, the direct or indirect
superclass of all classes in Java.

4

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.1 Introduction
9.2 Superclasses and Subclasses
9.3 protected Members
9.4 Relationship between Superclasses and Subclasses

9.4.1 Creating and Using a CommissionEmployee Class
9.4.2 Creating a BasePlusCommissionEmployee Class

without Using Inheritance
9.4.3 Creating a CommissionEmployee–

BasePlusCommissionEmployee Inheritance Hierarchy
9.4.4 CommissionEmployee–

BasePlusCommissionEmployee Inheritance Hierarchy
Using protected Instance Variables

9.4.5 CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Using private Instance Variables

5

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.5 Constructors in Subclasses
9.6 Software Engineering with Inheritance
9.7 Object Class
9.8 (Optional) GUI and Graphics Case Study: Displaying Text

and Images Using Labels
9.9 Wrap-Up

6

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.1 Introduction

• Inheritance
– Software reusability
– Create new class from existing class

• Absorb existing class’s data and behaviors
• Enhance with new capabilities

– Subclass extends superclass
• Subclass

– More specialized group of objects
– Behaviors inherited from superclass

• Can customize
– Additional behaviors

7

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.1 Introduction (Cont.)

• Class hierarchy
– Direct superclass

• Inherited explicitly (one level up hierarchy)
– Indirect superclass

• Inherited two or more levels up hierarchy
– Single inheritance

• Inherits from one superclass
– Multiple inheritance

• Inherits from multiple superclasses
– Java does not support multiple inheritance

8

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.2 Superclasses and subclasses

• Superclasses and subclasses
– Object of one class “is an” object of another class

• Example: Rectangle is quadrilateral.
– Class Rectangle inherits from class Quadrilateral
– Quadrilateral: superclass
– Rectangle: subclass

– Superclass typically represents larger set of objects than
subclasses

• Example:
– superclass: Vehicle

• Cars, trucks, boats, bicycles, …
– subclass: Car

• Smaller, more-specific subset of vehicles

9

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.1 | Inheritance examples.

Superclass Subclasses
Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle
Loan CarLoan, HomeImprovementLoan,

MortgageLoan
Employee Faculty, Staff
BankAccount CheckingAccount, SavingsAccount

10

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.2 Superclasses and subclasses (Cont.)

• Inheritance hierarchy
– Inheritance relationships: tree-like hierarchy structure
– Each class becomes

• superclass
– Supply members to other classes

OR
• subclass

– Inherit members from other classes

11

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.2 | Inheritance hierarchy for university CommunityMembers

12

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.3 | Inheritance hierarchy for Shapes.

13

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.3 protected Members

•protected access
– Intermediate level of protection between public and
private

– protected members accessible by
• superclass members
• subclass members
• Class members in the same package

– Subclass access to superclass member
• Keyword super and a dot (.)

14

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.1

Methods of a subclass cannot directly access
private members of their superclass. A subclass
can change the state of private superclass
instance variables only through non-private
methods provided in the superclass and inherited
by the subclass.

15

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.2

Declaring private instance variables helps
programmers test, debug and correctly modify
systems. If a subclass could access its superclass’s
private instance variables, classes that inherit
from that subclass could access the instance
variables as well. This would propagate access to
what should be private instance variables, and
the benefits of information hiding would be lost.

16

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.4 Relationship between Superclasses
and Subclasses

• Superclass and subclass relationship
– Example:
CommissionEmployee/BasePlusCommissionEmployee

inheritance hierarchy
• CommissionEmployee

– First name, last name, SSN, commission rate, gross sale
amount

• BasePlusCommissionEmployee

– First name, last name, SSN, commission rate, gross sale
amount

– Base salary

17

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.4.1 Creating and Using a
CommissionEmployee Class

• Class CommissionEmployee
– Extends class Object

• Keyword extends
• Every class in Java extends an existing class

– Except Object
• Every class inherits Object’s methods
• New class implicitly extends Object

– If it does not extend another class

18

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.3

The Java compiler sets the superclass of a class to
Object when the class declaration does not
explicitly extend a superclass.

19

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
.java

(1 of 4)

Line 4

Lines 6-10

Line 16

Lines 17-21

Lines 20-21

 1 // Fig. 9.4: CommissionEmployee.java

 2 // CommissionEmployee class represents a commission employee.

 3

 4 public class CommissionEmployee extends Object

 5 {

 6 private String firstName;

 7 private String lastName;

 8 private String socialSecurityNumber;

 9 private double grossSales; // gross weekly sales

10 private double commissionRate; // commission percentage

11

12 // five-argument constructor

13 public CommissionEmployee(String first, String last, String ssn,

14 double sales, double rate)

15 {

16 // implicit call to Object constructor occurs here

17 firstName = first;

18 lastName = last;

19 socialSecurityNumber = ssn;

20 setGrossSales(sales); // validate and store gross sales

21 setCommissionRate(rate); // validate and store commission rate

22 } // end five-argument CommissionEmployee constructor

23

24 // set first name

25 public void setFirstName(String first)

26 {

27 firstName = first;

28 } // end method setFirstName

29

Class CommissionEmployee
extends class Object

Implicit call to
Object constructor

Initialize instance variables

Declare private
instance variables

Invoke methods setGrossSales and
setCommissionRate to validate data

20

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
.java

(2 of 4)

30 // return first name

31 public String getFirstName()

32 {

33 return firstName;

34 } // end method getFirstName

35

36 // set last name

37 public void setLastName(String last)

38 {

39 lastName = last;

40 } // end method setLastName

41

42 // return last name

43 public String getLastName()

44 {

45 return lastName;

46 } // end method getLastName

47

48 // set social security number

49 public void setSocialSecurityNumber(String ssn)

50 {

51 socialSecurityNumber = ssn; // should validate

52 } // end method setSocialSecurityNumber

53

54 // return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } // end method getSocialSecurityNumber

59

21

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
.java

(3 of 4)

Lines 85-88

60 // set gross sales amount

61 public void setGrossSales(double sales)

62 {

63 grossSales = (sales < 0.0) ? 0.0 : sales;

64 } // end method setGrossSales

65

66 // return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } // end method getGrossSales

71

72 // set commission rate

73 public void setCommissionRate(double rate)

74 {

75 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;

76 } // end method setCommissionRate

77

78 // return commission rate

79 public double getCommissionRate()

80 {

81 return commissionRate;

82 } // end method getCommissionRate

83

84 // calculate earnings

85 public double earnings()

86 {

87 return commissionRate * grossSales;

88 } // end method earnings

89

Calculate earnings

22

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
.java

(4 of 4)

Lines 91-98

90 // return String representation of CommissionEmployee object

91 public String toString()

92 {

93 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",

94 "commission employee", firstName, lastName,

95 "social security number", socialSecurityNumber,

96 "gross sales", grossSales,

97 "commission rate", commissionRate);

98 } // end method toString

99 } // end class CommissionEmployee

Override method toString
of class Object

23

© 1992-2007 Pearson Education, Inc. All rights reserved.

Common Programming Error 9.1

It is a syntax error to override a method with a
more restricted access modifier—a public
method of the superclass cannot become a
protected or private method in the subclass; a
protected method of the superclass cannot
become a private method in the subclass. Doing
so would break the “is-a” relationship in which it
is required that all subclass objects be able to
respond to method calls that are made to public
methods declared in the superclass.(cont…)

24

© 1992-2007 Pearson Education, Inc. All rights reserved.

Common Programming Error 9.1

If a public method could be overridden as a
protected or private method, the subclass
objects would not be able to respond to the same
method calls as superclass objects. Once a method
is declared public in a superclass, the method
remains public for all that class’s direct and
indirect subclasses.

25

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
Test.java

(1 of 2)

Lines 9-10

Lines 15-25

Line 26-27

 1 // Fig. 9.5: CommissionEmployeeTest.java

 2 // Testing class CommissionEmployee.

 3

 4 public class CommissionEmployeeTest

 5 {

 6 public static void main(String args[])

 7 {

 8 // instantiate CommissionEmployee object

 9 CommissionEmployee employee = new CommissionEmployee(

10 "Sue", "Jones", "222-22-2222", 10000, .06);

11

12 // get commission employee data

13 System.out.println(

14 "Employee information obtained by get methods: \n");

15 System.out.printf("%s %s\n", "First name is",

16 employee.getFirstName());

17 System.out.printf("%s %s\n", "Last name is",

18 employee.getLastName());

19 System.out.printf("%s %s\n", "Social security number is",

20 employee.getSocialSecurityNumber());

21 System.out.printf("%s %.2f\n", "Gross sales is",

22 employee.getGrossSales());

23 System.out.printf("%s %.2f\n", "Commission rate is",

24 employee.getCommissionRate());

25

26 employee.setGrossSales(500); // set gross sales

27 employee.setCommissionRate(.1); // set commission rate

28

Instantiate CommissionEmployee object

Use CommissionEmployee’s get methods
to retrieve the object’s instance variable values

Use CommissionEmployee’s set methods
to change the object’s instance variable values

26

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
Test.java

(2 of 2)

Line 30

Program output

29 System.out.printf("\n%s:\n\n%s\n",

30 "Updated employee information obtained by toString", employee);

31 } // end main

32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00
commission rate: 0.10

Implicitly call object’s
toString method

27

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.4.2 Creating a BasePlusCommissionEmployee
Class without Using Inheritance

• Class BasePlusCommissionEmployee
– Implicitly extends Object
– Much of the code is similar to CommissionEmployee

• private instance variables
• public methods
• constructor

– Additions
• private instance variable baseSalary
• Methods setBaseSalary and getBaseSalary

28

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee.java

(1 of 4)

Line 12

Line 24

 1 // Fig. 9.6: BasePlusCommissionEmployee.java

 2 // BasePlusCommissionEmployee class represents an employee that receives

 3 // a base salary in addition to commission.

 4

 5 public class BasePlusCommissionEmployee

 6 {

 7 private String firstName;

 8 private String lastName;

 9 private String socialSecurityNumber;

10 private double grossSales; // gross weekly sales

11 private double commissionRate; // commission percentage

12 private double baseSalary; // base salary per week

13

14 // six-argument constructor

15 public BasePlusCommissionEmployee(String first, String last,

16 String ssn, double sales, double rate, double salary)

17 {

18 // implicit call to Object constructor occurs here

19 firstName = first;

20 lastName = last;

21 socialSecurityNumber = ssn;

22 setGrossSales(sales); // validate and store gross sales

23 setCommissionRate(rate); // validate and store commission rate

24 setBaseSalary(salary); // validate and store base salary

25 } // end six-argument BasePlusCommissionEmployee constructor

26

Add instance variable baseSalary

Use method setBaseSalary
to validate data

29

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee.java

(2 of 4)

27 // set first name

28 public void setFirstName(String first)

29 {

30 firstName = first;

31 } // end method setFirstName

32

33 // return first name

34 public String getFirstName()

35 {

36 return firstName;

37 } // end method getFirstName

38

39 // set last name

40 public void setLastName(String last)

41 {

42 lastName = last;

43 } // end method setLastName

44

45 // return last name

46 public String getLastName()

47 {

48 return lastName;

49 } // end method getLastName

50

51 // set social security number

52 public void setSocialSecurityNumber(String ssn)

53 {

54 socialSecurityNumber = ssn; // should validate

55 } // end method setSocialSecurityNumber

56

30

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee.java

(3 of 4)

57 // return social security number

58 public String getSocialSecurityNumber()

59 {

60 return socialSecurityNumber;

61 } // end method getSocialSecurityNumber

62

63 // set gross sales amount

64 public void setGrossSales(double sales)

65 {

66 grossSales = (sales < 0.0) ? 0.0 : sales;

67 } // end method setGrossSales

68

69 // return gross sales amount

70 public double getGrossSales()

71 {

72 return grossSales;

73 } // end method getGrossSales

74

75 // set commission rate

76 public void setCommissionRate(double rate)

77 {

78 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;

79 } // end method setCommissionRate

80

81 // return commission rate

82 public double getCommissionRate()

83 {

84 return commissionRate;

85 } // end method getCommissionRate

86

31

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee.java

(4 of 4)

Lines 88-91

Lines 94-97

Line 102

Lines 108-113

87 // set base salary

88 public void setBaseSalary(double salary)

89 {

90 baseSalary = (salary < 0.0) ? 0.0 : salary;

91 } // end method setBaseSalary

92

93 // return base salary

94 public double getBaseSalary()

95 {

96 return baseSalary;

97 } // end method getBaseSalary

98

99 // calculate earnings

100 public double earnings()

101 {

102 return baseSalary + (commissionRate * grossSales);

103 } // end method earnings

104

105 // return String representation of BasePlusCommissionEmployee

106 public String toString()

107 {

108 return String.format(

109 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",

110 "base-salaried commission employee", firstName, lastName,

111 "social security number", socialSecurityNumber,

112 "gross sales", grossSales, "commission rate", commissionRate,

113 "base salary", baseSalary);

114 } // end method toString

115 } // end class BasePlusCommissionEmployee

Method setBaseSalary validates data
and sets instance variable baseSalary

Method getBaseSalary returns the
value of instance variable baseSalary

Update method earnings to calculate the
earnings of a base-salaried commission employee

Update method toString
to display base salary

32

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
EmployeeTest.java

(1 of 2)

Line 9-11

Lines 16-27

 1 // Fig. 9.7: BasePlusCommissionEmployeeTest.java

 2 // Testing class BasePlusCommissionEmployee.

 3

 4 public class BasePlusCommissionEmployeeTest

 5 {

 6 public static void main(String args[])

 7 {

 8 // instantiate BasePlusCommissionEmployee object

 9 BasePlusCommissionEmployee employee =

10 new BasePlusCommissionEmployee(

11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

12

13 // get base-salaried commission employee data

14 System.out.println(

15 "Employee information obtained by get methods: \n");

16 System.out.printf("%s %s\n", "First name is",

17 employee.getFirstName());

18 System.out.printf("%s %s\n", "Last name is",

19 employee.getLastName());

20 System.out.printf("%s %s\n", "Social security number is",

21 employee.getSocialSecurityNumber());

22 System.out.printf("%s %.2f\n", "Gross sales is",

23 employee.getGrossSales());

24 System.out.printf("%s %.2f\n", "Commission rate is",

25 employee.getCommissionRate());

26 System.out.printf("%s %.2f\n", "Base salary is",

27 employee.getBaseSalary());

28

Instantiate BasePlusCommissionEmployee object

Use BasePluCommissionEmployee’s get
methods to retrieve the object’s instance variable values

33

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
EmployeeTest.java

(2 of 2)

Line 29

Line 33

Program output

29 employee.setBaseSalary(1000); // set base salary

30

31 System.out.printf("\n%s:\n\n%s\n",

32 "Updated employee information obtained by toString",

33 employee.toString());

34 } // end main

35 } // end class BasePlusCommissionEmployeeTest

Employee information obtained by get methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Use BasePlusCommissionEmployee’s
setBaseSalary methods to set base salary

Explicitly call object’s toString
method

34

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.4

Copying and pasting code from one class to
another can spread errors across multiple source
code files. To avoid duplicating code (and possibly
errors), use inheritance, rather than the “copy-
and-paste” approach, in situations where you
want one class to “absorb” the instance variables
and methods of another class.

35

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.5

With inheritance, the common instance variables
and methods of all the classes in the hierarchy are
declared in a superclass. When changes are
required for these common features, software
developers need only to make the changes in the
superclass—subclasses then inherit the changes.
Without inheritance, changes would need to be
made to all the source code files that contain a
copy of the code in question.

36

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.4.3 Creating a CommissionEmployee-
BasePlusCommiionEmployee Inheritance Hierarchy

• Class BasePlusCommissionEmployee2
– Extends class CommissionEmployee
– Is a CommissionEmployee
– Has instance variable baseSalary
– Inherits public and protected members
– Constructor not inherited

37

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee2.java

(1 of 3)

Line 4

Line 13

 1 // Fig. 9.8: BasePlusCommissionEmployee2.java

 2 // BasePlusCommissionEmployee2 inherits from class CommissionEmployee.

 3

 4 public class BasePlusCommissionEmployee2 extends CommissionEmployee

 5 {

 6 private double baseSalary; // base salary per week

 7

 8 // six-argument constructor

 9 public BasePlusCommissionEmployee2(String first, String last,

10 String ssn, double sales, double rate, double salary)

11 {

12 // explicit call to superclass CommissionEmployee constructor

13 super(first, last, ssn, sales, rate);

14

15 setBaseSalary(amount); // validate and store base salary

16 } // end six-argument BasePlusCommissionEmployee2 constructor

17

18 // set base salary

19 public void setBaseSalary(double salary)

20 {

21 baseSalary = (salary < 0.0) ? 0.0 : salary;

22 } // end method setBaseSalary

23

Class BasePluCommissionEmployee2
is a subclass of CommissionEmployee

Invoke the superclass constructor using
the superclass constructor call syntax

38

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee2.java

(2 of 3)

Line 34

Lines 41-46

24 // return base salary

25 public double getBaseSalary()

26 {

27 return baseSalary;

28 } // end method getBaseSalary

29

30 // calculate earnings

31 public double earnings()

32 {

33 // not allowed: commissionRate and grossSales private in superclass

34 return baseSalary + (commissionRate * grossSales);

35 } // end method earnings

36

37 // return String representation of BasePlusCommissionEmployee2

38 public String toString()

39 {

40 // not allowed: attempts to access private superclass members

41 return String.format(

42 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",

43 "base-salaried commission employee", firstName, lastName,

44 "social security number", socialSecurityNumber,

45 "gross sales", grossSales, "commission rate", commissionRate,

46 "base salary", baseSalary);

47 } // end method toString

48 } // end class BasePlusCommissionEmployee2

Compiler generates errors because superclass’s instance variable
commissionRate and grossSales are private

Compiler generates errors because superclass’s instance variable
firstName, lastName, socialSecurityNumber,
grossSales and commissionRate are private

39

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee2.java

(3 of 3)

Compiler generated
errorss

BasePlusCommissionEmployee2.java:34: commissionRate has private access in
CommissionEmployee
 return baseSalary + (commissionRate * grossSales);
 ^
BasePlusCommissionEmployee2.java:34: grossSales has private access in
CommissionEmployee
 return baseSalary + (commissionRate * grossSales);
 ^
BasePlusCommissionEmployee2.java:43: firstName has private access in
CommissionEmployee
 "base-salaried commission employee", firstName, lastName,
 ^
BasePlusCommissionEmployee2.java:43: lastName has private access in
CommissionEmployee
 "base-salaried commission employee", firstName, lastName,
 ^
BasePlusCommissionEmployee2.java:44: socialSecurityNumber has private access in
CommissionEmployee
 "social security number", socialSecurityNumber,
 ^
BasePlusCommissionEmployee2.java:45: grossSales has private access in
CommissionEmployee
 "gross sales", grossSales, "commission rate", commissionRate,
 ^
BasePlusCommissionEmployee2.java:45: commissionRate has private access in
CommissionEmployee
 "gross sales", grossSales, "commission rate", commissionRate,
 ^
7 errors

40

© 1992-2007 Pearson Education, Inc. All rights reserved.

Common Programming Error 9.2

A compilation error occurs if a subclass
constructor calls one of its superclass constructors
with arguments that do not match exactly the
number and types of parameters specified in one
of the superclass constructor declarations.

41

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.4.4 CommissionEmployee-
BasePlusCommissionEmployee Inheritance Hierarchy
Using protected Instance Variables

• Use protected instance variables
– Enable class BasePlusCommissionEmployee to

directly access superclass instance variables
– Superclass’s protected members are inherited by all

subclases of that superclass

42

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee2.java

(1 of 4)

Line 6-10

 1 // Fig. 9.9: CommissionEmployee2.java

 2 // CommissionEmployee2 class represents a commission employee.

 3

 4 public class CommissionEmployee2

 5 {

 6 protected String firstName;

 7 protected String lastName;

 8 protected String socialSecurityNumber;

 9 protected double grossSales; // gross weekly sales

10 protected double commissionRate; // commission percentage

11

12 // five-argument constructor

13 public CommissionEmployee2(String first, String last, String ssn,

14 double sales, double rate)

15 {

16 // implicit call to Object constructor occurs here

17 firstName = first;

18 lastName = last;

19 socialSecurityNumber = ssn;

20 setGrossSales(sales); // validate and store gross sales

21 setCommissionRate(rate); // validate and store commission rate

22 } // end five-argument CommissionEmployee2 constructor

23

24 // set first name

25 public void setFirstName(String first)

26 {

27 firstName = first;

28 } // end method setFirstName

29

Declare protected
instance variables

43

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee2.java

(2 of 4)

30 // return first name

31 public String getFirstName()

32 {

33 return firstName;

34 } // end method getFirstName

35

36 // set last name

37 public void setLastName(String last)

38 {

39 lastName = last;

40 } // end method setLastName

41

42 // return last name

43 public String getLastName()

44 {

45 return lastName;

46 } // end method getLastName

47

48 // set social security number

49 public void setSocialSecurityNumber(String ssn)

50 {

51 socialSecurityNumber = ssn; // should validate

52 } // end method setSocialSecurityNumber

53

54 // return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } // end method getSocialSecurityNumber

59

44

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee2.java

(3 of 4)

60 // set gross sales amount

61 public void setGrossSales(double sales)

62 {

63 grossSales = (sales < 0.0) ? 0.0 : sales;

64 } // end method setGrossSales

65

66 // return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } // end method getGrossSales

71

72 // set commission rate

73 public void setCommissionRate(double rate)

74 {

75 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;

76 } // end method setCommissionRate

77

78 // return commission rate

79 public double getCommissionRate()

80 {

81 return commissionRate;

82 } // end method getCommissionRate

83

84 // calculate earnings

85 public double earnings()

86 {

87 return commissionRate * grossSales;

88 } // end method earnings

89

45

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee2.java

(4 of 4)

90 // return String representation of CommissionEmployee2 object

91 public String toString()

92 {

93 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",

94 "commission employee", firstName, lastName,

95 "social security number", socialSecurityNumber,

96 "gross sales", grossSales,

97 "commission rate", commissionRate);

98 } // end method toString

99 } // end class CommissionEmployee2

46

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee3.java

(1 of 2)

Line 13

 1 // Fig. 9.10: BasePlusCommissionEmployee3.java

 2 // BasePlusCommissionEmployee3 inherits from CommissionEmployee2 and has

 3 // access to CommissionEmployee2's protected members.

 4

 5 public class BasePlusCommissionEmployee3 extends CommissionEmployee2

 6 {

 7 private double baseSalary; // base salary per week

 8

 9 // six-argument constructor

10 public BasePlusCommissionEmployee3(String first, String last,

11 String ssn, double sales, double rate, double salary)

12 {

13 super(first, last, ssn, sales, rate);

14 setBaseSalary(salary); // validate and store base salary

15 } // end six-argument BasePlusCommissionEmployee3 constructor

16

17 // set base salary

18 public void setBaseSalary(double salary)

19 {

20 baseSalary = (salary < 0.0) ? 0.0 : salary;

21 } // end method setBaseSalary

22

23 // return base salary

24 public double getBaseSalary()

25 {

26 return baseSalary;

27 } // end method getBaseSalary

28

Must call superclass’s
constructor

47

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee3.java

(2 of 2)

Line 32

Lines 38-43

29 // calculate earnings

30 public double earnings()

31 {

32 return baseSalary + (commissionRate * grossSales);

33 } // end method earnings

34

35 // return String representation of BasePlusCommissionEmployee3

36 public String toString()

37 {

38 return String.format(

39 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",

40 "base-salaried commission employee", firstName, lastName,

41 "social security number", socialSecurityNumber,

42 "gross sales", grossSales, "commission rate", commissionRate,

43 "base salary", baseSalary);

44 } // end method toString

45 } // end class BasePlusCommissionEmployee3

Directly access
superclass’s protected
instance variables

48

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
EmployeeTest3.java

(1 of 2)

 1 // Fig. 9.11: BasePlusCommissionEmployeeTest3.java

 2 // Testing class BasePlusCommissionEmployee3.

 3

 4 public class BasePlusCommissionEmployeeTest3

 5 {

 6 public static void main(String args[])

 7 {

 8 // instantiate BasePlusCommissionEmployee3 object

 9 BasePlusCommissionEmployee3 employee =

10 new BasePlusCommissionEmployee3(

11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

12

13 // get base-salaried commission employee data

14 System.out.println(

15 "Employee information obtained by get methods: \n");

16 System.out.printf("%s %s\n", "First name is",

17 employee.getFirstName());

18 System.out.printf("%s %s\n", "Last name is",

19 employee.getLastName());

20 System.out.printf("%s %s\n", "Social security number is",

21 employee.getSocialSecurityNumber());

22 System.out.printf("%s %.2f\n", "Gross sales is",

23 employee.getGrossSales());

24 System.out.printf("%s %.2f\n", "Commission rate is",

25 employee.getCommissionRate());

26 System.out.printf("%s %.2f\n", "Base salary is",

27 employee.getBaseSalary());

28

49

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
EmployeeTest3.java

(2 of 2)

Program output

29 employee.setBaseSalary(1000); // set base salary

30

31 System.out.printf("\n%s:\n\n%s\n",

32 "Updated employee information obtained by toString",

33 employee.toString());

34 } // end main

35 } // end class BasePlusCommissionEmployeeTest3

Employee information obtained by get methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

50

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.4.4 CommissionEmployee-
BasePlusCommissionEmployee Inheritance Hierarchy
Using protected Instance Variables (Cont.)

• Using protected instance variables
– Advantages

• subclasses can modify values directly
• Slight increase in performance

– Avoid set/get method call overhead
– Disadvantages

• No validity checking
– subclass can assign illegal value

• Implementation dependent
– subclass methods more likely dependent on superclass

implementation
– superclass implementation changes may result in subclass

modifications
• Fragile (brittle) software

51

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.6

Use the protected access modifier when a
superclass should provide a method only to its
subclasses and other classes in the same package,
but not to other clients.

52

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.7

Declaring superclass instance variables private
(as opposed to protected) enables the superclass
implementation of these instance variables to
change without affecting subclass
implementations.

53

© 1992-2007 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 9.1

When possible, do not include protected instance
variables in a superclass. Instead, include non-
private methods that access private instance
variables. This will ensure that objects of the class
maintain consistent states.

54

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.4.5 CommissionEmployee-
BasePlusCommissionEmployee Inheritance Hierarchy
Uing private Instance Variables

• Reexamine hierarchy
– Use the best software engineering practice

• Declare instance variables as private
• Provide public get and set methods
• Use get method to obtain values of instance variables

55

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee3.java

(1 of 4)

Lines 6-10

 1 // Fig. 9.12: CommissionEmployee3.java

 2 // CommissionEmployee3 class represents a commission employee.

 3

 4 public class CommissionEmployee3

 5 {

 6 private String firstName;

 7 private String lastName;

 8 private String socialSecurityNumber;

 9 private double grossSales; // gross weekly sales

10 private double commissionRate; // commission percentage

11

12 // five-argument constructor

13 public CommissionEmployee3(String first, String last, String ssn,

14 double sales, double rate)

15 {

16 // implicit call to Object constructor occurs here

17 firstName = first;

18 lastName = last;

19 socialSecurityNumber = ssn;

20 setGrossSales(sales); // validate and store gross sales

21 setCommissionRate(rate); // validate and store commission rate

22 } // end five-argument CommissionEmployee3 constructor

23

24 // set first name

25 public void setFirstName(String first)

26 {

27 firstName = first;

28 } // end method setFirstName

29

Declare private
instance variables

56

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee3.java

(2 of 4)

30 // return first name

31 public String getFirstName()

32 {

33 return firstName;

34 } // end method getFirstName

35

36 // set last name

37 public void setLastName(String last)

38 {

39 lastName = last;

40 } // end method setLastName

41

42 // return last name

43 public String getLastName()

44 {

45 return lastName;

46 } // end method getLastName

47

48 // set social security number

49 public void setSocialSecurityNumber(String ssn)

50 {

51 socialSecurityNumber = ssn; // should validate

52 } // end method setSocialSecurityNumber

53

54 // return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } // end method getSocialSecurityNumber

59

57

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee3.java

(3 of 4)

60 // set gross sales amount

61 public void setGrossSales(double sales)

62 {

63 grossSales = (sales < 0.0) ? 0.0 : sales;

64 } // end method setGrossSales

65

66 // return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } // end method getGrossSales

71

72 // set commission rate

73 public void setCommissionRate(double rate)

74 {

75 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;

76 } // end method setCommissionRate

77

78 // return commission rate

79 public double getCommissionRate()

80 {

81 return commissionRate;

82 } // end method getCommissionRate

83

58

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

Commission

Employee3.java

(4 of 4)

Line 87

Lines 94-97

84 // calculate earnings

85 public double earnings()

86 {

87 return getCommissionRate() * getGrossSales();

88 } // end method earnings

89

90 // return String representation of CommissionEmployee3 object

91 public String toString()

92 {

93 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",

94 "commission employee", getFirstName(), getLastName(),

95 "social security number", getSocialSecurityNumber(),

96 "gross sales", getGrossSales(),

97 "commission rate", getCommissionRate());

98 } // end method toString

99 } // end class CommissionEmployee3

Use get methods to obtain the
values of instance variables

59

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee4.java

(1 of 2)

 1 // Fig. 9.13: BasePlusCommissionEmployee4.java

 2 // BasePlusCommissionEmployee4 class inherits from CommissionEmployee3 and

 3 // accesses CommissionEmployee3's private data via CommissionEmployee3's

 4 // public methods.

 5

 6 public class BasePlusCommissionEmployee4 extends CommissionEmployee3

 7 {

 8 private double baseSalary; // base salary per week

 9

10 // six-argument constructor

11 public BasePlusCommissionEmployee4(String first, String last,

12 String ssn, double sales, double rate, double salary)

13 {

14 super(first, last, ssn, sales, rate);

15 setBaseSalary(salary); // validate and store base salary

16 } // end six-argument BasePlusCommissionEmployee4 constructor

17

18 // set base salary

19 public void setBaseSalary(double salary)

20 {

21 baseSalary = (salary < 0.0) ? 0.0 : salary;

22 } // end method setBaseSalary

23

Inherits from
CommissionEmployee3

60

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee4.java

(2 of 2)

Line 33 & 40

Line 33

Lines 40

24 // return base salary

25 public double getBaseSalary()

26 {

27 return baseSalary;

28 } // end method getBaseSalary

29

30 // calculate earnings

31 public double earnings()

32 {

33 return getBaseSalary() + super.earnings();

34 } // end method earnings

35

36 // return String representation of BasePlusCommissionEmployee4

37 public String toString()

38 {

39 return String.format("%s %s\n%s: %.2f", "base-salaried",

40 super.toString(), "base salary", getBaseSalary());

41 } // end method toString

42 } // end class BasePlusCommissionEmployee4

Use get methods to obtain the
values of instance variables

Invoke an overridden superclass
method from a subclass

Invoke an overridden superclass
method from a subclass

61

© 1992-2007 Pearson Education, Inc. All rights reserved.

Common Programming Error 9.3

When a superclass method is overridden in a
subclass, the subclass version often calls the
superclass version to do a portion of the work.
Failure to prefix the superclass method name with
the keyword super and a dot (.) separator when
referencing the superclass’s method causes the
subclass method to call itself, creating an error
called infinite recursion. Recursion, used
correctly, is a powerful capability discussed in
Chapter 15, Recursion.

62

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
EmployeeTest4.java

(1 of 2)

Lines 9-11

Lines 16-25

 1 // Fig. 9.14: BasePlusCommissionEmployeeTest4.java

 2 // Testing class BasePlusCommissionEmployee4.

 3

 4 public class BasePlusCommissionEmployeeTest4

 5 {

 6 public static void main(String args[])

 7 {

 8 // instantiate BasePlusCommissionEmployee4 object

 9 BasePlusCommissionEmployee4 employee =

10 new BasePlusCommissionEmployee4(

11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

12

13 // get base-salaried commission employee data

14 System.out.println(

15 "Employee information obtained by get methods: \n");

16 System.out.printf("%s %s\n", "First name is",

17 employee.getFirstName());

18 System.out.printf("%s %s\n", "Last name is",

19 employee.getLastName());

20 System.out.printf("%s %s\n", "Social security number is",

21 employee.getSocialSecurityNumber());

22 System.out.printf("%s %.2f\n", "Gross sales is",

23 employee.getGrossSales());

24 System.out.printf("%s %.2f\n", "Commission rate is",

25 employee.getCommissionRate());

26 System.out.printf("%s %.2f\n", "Base salary is",

27 employee.getBaseSalary());

28

Create
BasePlusCommissionEmployee4

object.

Use inherited get methods to
access inherited private
instance variables

Use BasePlusCommissionEmployee4 get
method to access private instance variable.

63

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
EmployeeTest4.java

(2 of 2)

29 employee.setBaseSalary(1000); // set base salary

30

31 System.out.printf("\n%s:\n\n%s\n",

32 "Updated employee information obtained by toString",

33 employee.toString());

34 } // end main

35 } // end class BasePlusCommissionEmployeeTest4

Employee information obtained by get methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Use BasePlusCommissionEmployee4 set
method to modify private instance variable
baseSalary.

64

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.5 Constructors in Subclasses

• Instantiating subclass object
– Chain of constructor calls

• subclass constructor invokes superclass constructor
– Implicitly or explicitly

• Base of inheritance hierarchy
– Last constructor called in chain is Object’s constructor
– Original subclass constructor’s body finishes executing last
– Example: CommissionEmployee3-

BasePlusCommissionEmployee4 hierarchy
• CommissionEmployee3 constructor called second last

(last is Object constructor)
• CommissionEmployee3 constructor’s body finishes

execution second (first is Object constructor’s body)

65

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.8

When a program creates a subclass object, the
subclass constructor immediately calls the
superclass constructor (explicitly, via super, or
implicitly). The superclass constructor’s body
executes to initialize the superclass’s instance
variables that are part of the subclass object, then
the subclass constructor’s body executes to
initialize the subclass-only instance
variables.(cont…)

66

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.8

Java ensures that even if a constructor does not
assign a value to an instance variable, the variable
is still initialized to its default value (e.g., 0 for
primitive numeric types, false for booleans,
null for references).

67

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
4.java

(1 of 4)

Lines 23-24

 1 // Fig. 9.15: CommissionEmployee4.java

 2 // CommissionEmployee4 class represents a commission employee.

 3

 4 public class CommissionEmployee4

 5 {

 6 private String firstName;

 7 private String lastName;

 8 private String socialSecurityNumber;

 9 private double grossSales; // gross weekly sales

10 private double commissionRate; // commission percentage

11

12 // five-argument constructor

13 public CommissionEmployee4(String first, String last, String ssn,

14 double sales, double rate)

15 {

16 // implicit call to Object constructor occurs here

17 firstName = first;

18 lastName = last;

19 socialSecurityNumber = ssn;

20 setGrossSales(sales); // validate and store gross sales

21 setCommissionRate(rate); // validate and store commission rate

22

23 System.out.printf(

24 "\nCommissionEmployee4 constructor:\n%s\n", this);

25 } // end five-argument CommissionEmployee4 constructor

26

Constructor outputs message to
demonstrate method call order.

68

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
4.java

(2 of 4)

27 // set first name

28 public void setFirstName(String first)

29 {

30 firstName = first;

31 } // end method setFirstName

32

33 // return first name

34 public String getFirstName()

35 {

36 return firstName;

37 } // end method getFirstName

38

39 // set last name

40 public void setLastName(String last)

41 {

42 lastName = last;

43 } // end method setLastName

44

45 // return last name

46 public String getLastName()

47 {

48 return lastName;

49 } // end method getLastName

50

51 // set social security number

52 public void setSocialSecurityNumber(String ssn)

53 {

54 socialSecurityNumber = ssn; // should validate

55 } // end method setSocialSecurityNumber

56

69

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
4.java

(3 of 4)

57 // return social security number

58 public String getSocialSecurityNumber()

59 {

60 return socialSecurityNumber;

61 } // end method getSocialSecurityNumber

62

63 // set gross sales amount

64 public void setGrossSales(double sales)

65 {

66 grossSales = (sales < 0.0) ? 0.0 : sales;

67 } // end method setGrossSales

68

69 // return gross sales amount

70 public double getGrossSales()

71 {

72 return grossSales;

73 } // end method getGrossSales

74

75 // set commission rate

76 public void setCommissionRate(double rate)

77 {

78 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;

79 } // end method setCommissionRate

80

70

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

CommissionEmployee
4.java

(4 of 4)

81 // return commission rate

82 public double getCommissionRate()

83 {

84 return commissionRate;

85 } // end method getCommissionRate

86

87 // calculate earnings

88 public double earnings()

89 {

90 return getCommissionRate() * getGrossSales();

91 } // end method earnings

92

93 // return String representation of CommissionEmployee4 object

94 public String toString()

95 {

96 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",

97 "commission employee", getFirstName(), getLastName(),

98 "social security number", getSocialSecurityNumber(),

99 "gross sales", getGrossSales(),

100 "commission rate", getCommissionRate());

101 } // end method toString

102 } // end class CommissionEmployee4

71

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee5.java

(1 of 2)

Lines 15-16

 1 // Fig. 9.16: BasePlusCommissionEmployee5.java

 2 // BasePlusCommissionEmployee5 class declaration.

 3

 4 public class BasePlusCommissionEmployee5 extends CommissionEmployee4

 5 {

 6 private double baseSalary; // base salary per week

 7

 8 // six-argument constructor

 9 public BasePlusCommissionEmployee5(String first, String last,

10 String ssn, double sales, double rate, double salary)

11 {

12 super(first, last, ssn, sales, rate);

13 setBaseSalary(salary); // validate and store base salary

14

15 System.out.printf(

16 "\nBasePlusCommissionEmployee5 constructor:\n%s\n", this);

17 } // end six-argument BasePlusCommissionEmployee5 constructor

18

19 // set base salary

20 public void setBaseSalary(double salary)

21 {

22 baseSalary = (salary < 0.0) ? 0.0 : salary;

23 } // end method setBaseSalary

24

Constructor outputs message to
demonstrate method call order.

72

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

BasePlusCommission
Employee5.java

(2 of 2)

25 // return base salary

26 public double getBaseSalary()

27 {

28 return baseSalary;

29 } // end method getBaseSalary

30

31 // calculate earnings

32 public double earnings()

33 {

34 return getBaseSalary() + super.earnings();

35 } // end method earnings

36

37 // return String representation of BasePlusCommissionEmployee5

38 public String toString()

39 {

40 return String.format("%s %s\n%s: %.2f", "base-salaried",

41 super.toString(), "base salary", getBaseSalary());

42 } // end method toString

43 } // end class BasePlusCommissionEmployee5

73

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

ConstructorTest

.java

(1 of 2)

Lines 8-9

Lines 12-19

 1 // Fig. 9.17: ConstructorTest.java

 2 // Display order in which superclass and subclass constructors are called.

 3

 4 public class ConstructorTest

 5 {

 6 public static void main(String args[])

 7 {

 8 CommissionEmployee4 employee1 = new CommissionEmployee4(

 9 "Bob", "Lewis", "333-33-3333", 5000, .04);

10

11 System.out.println();

12 BasePlusCommissionEmployee5 employee2 =

13 new BasePlusCommissionEmployee5(

14 "Lisa", "Jones", "555-55-5555", 2000, .06, 800);

15

16 System.out.println();

17 BasePlusCommissionEmployee5 employee3 =

18 new BasePlusCommissionEmployee5(

19 "Mark", "Sands", "888-88-8888", 8000, .15, 2000);

20 } // end main

21 } // end class ConstructorTest

Instantiate two
BasePlusCommissionEmployee5
objects to demonstrate order of subclass
and superclass constructor method calls.

Instantiate
CommissionEmployee4 object

74

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

ConstructorTest

.java

(2 of 2)

CommissionEmployee4 constructor:
commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

CommissionEmployee4 constructor:
base-salaried commission employee: Lisa Jones
social security number: 555-55-5555
gross sales: 2000.00
commission rate: 0.06
base salary: 0.00

BasePlusCommissionEmployee5 constructor:
base-salaried commission employee: Lisa Jones
social security number: 555-55-5555
gross sales: 2000.00
commission rate: 0.06
base salary: 800.00

CommissionEmployee4 constructor:
base-salaried commission employee: Mark Sands
social security number: 888-88-8888
gross sales: 8000.00
commission rate: 0.15
base salary: 0.00

BasePlusCommissionEmployee5 constructor:
base-salaried commission employee: Mark Sands
social security number: 888-88-8888
gross sales: 8000.00
commission rate: 0.15
base salary: 2000.00

Subclass
BasePlusCommissionEmployee5
constructor body executes after superclass
CommissionEmployee4’s constructor
finishes execution.

75

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.6 Software Engineering with
Inheritance

• Customizing existing software
– Inherit from existing classes

• Include additional members
• Redefine superclass members
• No direct access to superclass’s source code

– Link to object code
– Independent software vendors (ISVs)

• Develop proprietary code for sale/license
– Available in object-code format

• Users derive new classes
– Without accessing ISV proprietary source code

76

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.9

Despite the fact that inheriting from a class does
not require access to the class’s source code,
developers often insist on seeing the source code to
understand how the class is implemented.
Developers in industry want to ensure that they
are extending a solid class—for example, a class
that performs well and is implemented securely.

77

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.10

At the design stage in an object-oriented system,
the designer often finds that certain classes are
closely related. The designer should “factor out”
common instance variables and methods and
place them in a superclass. Then the designer
should use inheritance to develop subclasses,
specializing them with capabilities beyond those
inherited from the superclass.

78

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.11

Declaring a subclass does not affect its
superclass’s source code. Inheritance preserves
the integrity of the superclass.

79

© 1992-2007 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.12

Just as designers of non-object-oriented systems should
avoid method proliferation, designers of object-oriented
systems should avoid class proliferation. Such
proliferation creates management problems and can
hinder software reusability, because in a huge class library
it becomes difficult for a client to locate the most
appropriate classes. The alternative is to create fewer
classes that provide more substantial functionality, but
such classes might prove cumbersome.

80

© 1992-2007 Pearson Education, Inc. All rights reserved.

Performance Tip 9.1

If subclasses are larger than they need to be (i.e.,
contain too much functionality), memory and
processing resources might be wasted. Extend the
superclass that contains the functionality that is
closest to what is needed.

81

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.7 Object Class

• Class Object methods
– clone

– equals

– finalize

– getClass

– hashCode

– notify, notifyAll, wait
– toString

82

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.18 | Object methods that are inherited directly or indirectly by all classes.
(Part 1 of 4)

Method Description

Clone This protected method, which takes no arguments and returns an Object
reference, makes a copy of the object on which it is called. When cloning is
required for objects of a class, the class should override method clone as a
public method and should implement interface Cloneable (package
java.lang). The default implementation of this method performs a so-
called shallow copy—instance variable values in one object are copied into
another object of the same type. For reference types, only the references are
copied. A typical overridden clone method’s implementation would
perform a deep copy that creates a new object for each reference type
instance variable. There are many subtleties to overriding method clone.
You can learn more about cloning in the following article:

java.sun.com/developer/JDCTechTips/2001/tt0306.html

83

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.18 | Object methods that are inherited directly or indirectly by all classes.
(Part 2 of 4)

Method Description

Equals This method compares two objects for equality and returns true if
they are equal and false otherwise. The method takes any Object
as an argument. When objects of a particular class must be compared
for equality, the class should override method equals to compare
the contents of the two objects. The method’s implementation should
meet the following requirements:

• It should return false if the argument is null.

• It should return true if an object is compared to itself, as in
object1.equals(object1).

• It should return true only if both
object1.equals(object2) and
object2.equals(object1) would return true.

• For three objects, if object1.equals(object2) returns
true and object2.equals(object3) returns true, then
object1.equals(object3) should also return true.

• If equals is called multiple times with the two objects and the
objects do not change, the method should consistently return true if
the objects are equal and false otherwise.

A class that overrides equals should also override hashCode to
ensure that equal objects have identical hashcodes. The default
equals implementation uses operator == to determine whether two
references refer to the same object in memory. Section 29.3.3
demonstrates class String’s equals method and differentiates
between comparing String objects with == and with equals.

84

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.18 | Object methods that are inherited directly or indirectly by all classes.
(Part 3 of 4)

Method Description

finalize This protected method (introduced in Section 8.10 and
Section 8.11) is called by the garbage collector to perform
termination housekeeping on an object just before the garbage
collector reclaims the object’s memory. It is not guaranteed that
the garbage collector will reclaim an object, so it cannot be
guaranteed that the object’s finalize method will execute. The
method must specify an empty parameter list and must return
void. The default implementation of this method serves as a
placeholder that does nothing.

getClass Every object in Java knows its own type at execution time.
Method getClass (used in Section 10.5 and Section 21.3)
returns an object of class Class (package java.lang) that
contains information about the object’s type, such as its class
name (returned by Class method getName). You can learn
more about class Class in the online API documentation at
java.sun.com/j2se/5.0/docs/api/java/lang/Class
.html.

85

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.18 | Object methods that are inherited directly or indirectly by all classes.
(Part 4 of 4)

Method Description

hashCode A hashtable is a data structure (discussed in Section 19.10) that
relates one object, called the key, to another object, called the
value. When initially inserting a value into a hashtable, the
key’s hashCode method is called. The hashcode value
returned is used by the hashtable to determine the location at
which to insert the corresponding value. The key’s hashcode is
also used by the hashtable to locate the key’s corresponding
value.

notify,
notifyAll,
wait

Methods notify, notifyAll and the three overloaded
versions of wait are related to multithreading, which is
discussed in Chapter 23. In J2SE 5.0, the multithreading model
has changed substantially, but these features continue to be
supported.

toString This method (introduced in Section 9.4.1) returns a String
representation of an object. The default implementation of this
method returns the package name and class name of the
object’s class followed by a hexadecimal representation of the
value returned by the object’s hashCode method.

86

© 1992-2007 Pearson Education, Inc. All rights reserved.

9.8 (Optional) GUI and Graphics Case Study:
Displaying Text and Images Using Labels

• Labels
– Display information and instructions
– JLabel

• Display a single line of text
• Display an image
• Display both text and image

87

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

LabelDemo.java

(1 of 2)

Line 13

Line 16

Line 19

Line 25

 1 // Fig 9.19: LabelDemo.java

 2 // Demonstrates the use of labels.

 3 import java.awt.BorderLayout;

 4 import javax.swing.ImageIcon;

 5 import javax.swing.JLabel;

 6 import javax.swing.JFrame;

 7

 8 public class LabelDemo

 9 {

10 public static void main(String args[])

11 {

12 // Create a label with plain text

13 JLabel northLabel = new JLabel("North");

14

15 // create an icon from an image so we can put it on a JLabel

16 ImageIcon labelIcon = new ImageIcon("GUItip.gif");

17

18 // create a label with an Icon instead of text

19 JLabel centerLabel = new JLabel(labelIcon);

20

21 // create another label with an Icon

22 JLabel southLabel = new JLabel(labelIcon);

23

24 // set the label to display text (as well as an icon)

25 southLabel.setText("South");

26

Change the text the
southLabel displays

ImageIcon constructor
argument specifies the path
to the image

Declare and initialize
centerLabel with a JLabel
that displays the labelIcon

Create a JLabel that
displays the string “North”

88

© 1992-2007 Pearson Education, Inc. All rights reserved.

Outline

LabelDemo.java

(2 of 2)

Lines 34-36

27 // create a frame to hold the labels

28 JFrame application = new JFrame();

29

30 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

31

32 // add the labels to the frame; the second argument specifies

33 // where on the frame to add the label

34 application.add(northLabel, BorderLayout.NORTH);

35 application.add(centerLabel, BorderLayout.CENTER);

36 application.add(southLabel, BorderLayout.SOUTH);

37

38 application.setSize(300, 300); // set the size of the frame

39 application.setVisible(true); // show the frame

40 } // end main

41 } // end class LabelDemo

Attach the labels to the JFrame
at north, center and south

89

© 1992-2007 Pearson Education, Inc. All rights reserved.

Fig. 9.20 | JLabel displaying shape statistics.

