
1

CS 335
Graphics, Image Processing, User

Interface Design

2-3:15 TR 207 RGAN

Brent Seales

2

Course Goals

Programming with Java and associated APIs
Graphical User Interfaces (GUIs)
Introduction to Image Processing
Introduction to 2D Computer Graphics

3

Administrative Issues

Course Webpage – check early and OFTEN

Mailing List
Course Work
– 5 Programming assignments
– 4 Exercises (Problem Sets)
– 2 Exams

Assistant
TBA

http://dmn.netlab.uky.edu/~seales/cs335.htmlhttp://dmn.netlab.uky.edu/~seales/cs335.html

4

Introduction to Java

5

The Java Programming Language:
Selected Web Resources

Java Homepage: www.java.sun.com
Java JDK 6 Update 2 java.sun.com/javase
Java Advanced Imaging (JAI):

jai.dev.java.net

The Java Tutorials:
java.sun.com/docs/books/tutorial/

On-line trade magazines, etc:
www.javaside.com/
www.javaworld.com/

6

Additional Materials

The Java Advanced Imaging (JAI) libraries
The Java 3D environment
Java tutorial materials
Java API documentation

7

Program Development Cycle

What does this mean for Java, which is an interpreted language?

edit compile load verify execute

8

Java is Interpreted

Source Code
Java source is text saved in a file with a .java
extension. Java looks like C++.

Compile source using Java compiler
javac Myprogram.java

Compiler produces an output file, which ordinarily
would be executable code (machine instructions).

Low-level "bytecode" file
Myprogram.class

9

Executing Java Programs

Standalone java program:
invoke the Java interpreter:
java Myprogram (no extension; assumes .class)

Loader finds Myprogram.class, loads it into local
memory, verifies it, and interprets (executes) it.

(run examples)

10

Example: A Complete Java Program

import java.io.*;

public class Testclass
{
public static void main(String args[]) throws

IOException
{
int count = 0;

while (count < 10)
{
System.out.println("counter is " + count);
count++;

}
}

}

11

New concepts with Java?

Machine API
Specs

Programs which use
API

12

Interpreter/Emulator/API

Interpreter/emulator is an old idea:
WINE: Windows interpreter for Linux OS
SoftWindows: Windows interpreter for Silicon Graphics
Executor: Macintosh emulator for Wintel PCs

Application Programmer Interface (API) is an old idea
OpenGL: Graphics language
Renderman
etc.

13

New Possibilities

Combine API and Interpreter: network
transparency via HTML
– Each hardware platform has specific

implementation of API for local hardware
– Each platform can run interpreter
– Interpreter gives security from programs coming

over network
– Applications can run anywhere

14

The Robust Java API

The interface contains classes which can be declared
directly or extended which do complex tasks:

– Manage buttons
– Manage text input windows
– Display images
– Read audio files
– Run multiple threads in parallel

Short Java programs can accomplish complex tasks via
the API.

15

Interpreted Java: What about
speed?

API classes can perform well when
implemented locally
Most applets end up being a series of API
calls
Computers are faster
Network is still the bottleneck for many
applications

16

Why is Java the best?

It isn't, necessarily!
Includes powerful ideas
First to get API + secure interpreted "platform
independence” to be widely accepted

17

Summary

Java Development Environment:
edit, compile, load, verify, execute

Applets are different from standalone Java programs

Java combines powerful API (via complex classes) with
interpreter and network (HTTP) interfaces.

18

Programming in Java

Define data
Calculate using data
Output result

• Merge data and functions into object
• Invoke functions to operate on data

Java is object-oriented:

Java program must:
• Define data and functions (in a class)
• Invoke functions to compute things

19

Object-Oriented Programming: Classes
A class is an object definition, and includes data and
functions on that data:

public class MyCourseGrade
{
int pset1;
int pset2;

:
int final_exam;

computeAverage()
{

:
}

}

object
data

object
method

20

Classes

Class: code which defines an object
Object: a variable (data + methods) which is an instance of a class
Java program: a bunch of class definitions, variables, etc.

21

Classes
One special class (the "mother of all classes") contains main(),
and this is where flow of control begins:

class Test

main

Kernel of execution is here!

class AnotherClass (like MyCourseGrade)

memberFunc1()

memberFunc2()

22

Notes

Java flow of control starts in main(), in
whichever class main() is defined
There can only be one class per file (unless
you are defining subclasses)
The filename must match the class name in a
Java source file!

23

Example 1

import java.io.*;

public class Test
{
public static void main(String[] str)

throws IOException
{
System.out.println("That’s it, folks!");

}
}

A Java program with one class and one member called main():

24

Example 1: Scoping

class Test

data (none defined)
main()

member functions

25

Example 2
Add another member function:

import java.io.*;
public class Test
{

public static void main(String[] str)
throws IOException

{
System.out.println(“That it, folks!");

}
public void doStuff()

{
System.out.println(“doing stuff.");

}
}

26

class Test

data (none defined) main()

member functions

doStuff()

Example 2: Scoping

27

Example 3

import java.io.*;
public class Test
{

public static void main(String[] str)
throws IOException

{
Test t; // t is of type "Test"
t = new Test(); // allocate object
t.doStuff(); // call member function
System.out.println("That it, folks!");

}

Define an object of class Test and make a function call

28

Example 3 (continued)

public void doStuff()
{
System.out.println("I'm doing stuff.");

}
}

Notes:
•Static methods cannot access nonstatic class members
directly
•main() must always be static

29

Test.java:
import java.io.*;
public class Test
{

public static void main(String[] str)
throws IOException

{
Stuff t;
t = new Stuff();
t.doStuff();
System.out.println("That it, folks!");

}
}

Put main class and a different class in separate files:

Example 4

30

Stuff.java:
public class Stuff
{
public void doStuff()
{
System.out.println("I'm doing stuff.");

}
}

Notes
• One class per file
• To compile: javac Test.java

Example 4

31

Java I/O

The System object provides a way to manage I/O from a
more traditional "stream" (terminal window).

GUI-based I/O requires the action() method to deal with
GUI mouse events.

The System object requires no action() method

But terminal I/O is inadequate in a browser-based (GUI)
environment.

32

Summary of Some Basic Java
Constructs

Everything is related to objects:

Data declaration:

int i; // declare i to be an int
Test t; // declare t to be

// an object of type Test
i = 0; // set the int i equal to 0
t = new Test();

// initialize t and allocate space
// using a constructor

33

Java Constructs

Traditional, but with object-oriented syntax for function calls
and member functions

Where control starts in the Applet class is important

Executable statements
Similar to C/C++: while, for, if/else,
switch, etc.

Flow of Control:

