CS 335
Graphics, Image Processing, User
Interface Design

2-3:15 TR 207 RGAN

Brent Seales

Course Goals

Programming with Java and associated APls
Graphical User Interfaces (GUIs)
Introduction to Image Processing

o
o
o
e Introduction to 2D Computer Graphics

Administrative Issues
« /7

e Course Webpage — check early and OFTEN
http://dmn.netlab.uky.edu/~seales/cs335.html
e Mailing List
e Course Work
- 5 Programming assignments

— 4 Exercises (Problem Sets)
- 2 Exams

e Assistant
TBA

Introduction to Java

The Java Programming Language:
Selected Web Resources

Java Homepage: www.java.sun.com
Java JDK 6 Update 2 java.sun.com/javase
Java Advanced Imaging (JAI):

jai.dev.java.net

The Java Tutorials:

java.sun.com/docs/books/tutorial/

On-line trade magazines, etc:

www. javaside.com/
www. javaworld.com/

Additional Materials
« "/ /7

e The Java Advanced Imaging (JAI) libraries
e The Java 3D environment

e Java tutorial materials

e Java API| documentation

Program Development Cycle
S

SN N\

edit compile mmm) load verify mmmm) execute

\ O o) O g

What does this mean for Java, which is an interpreted language?

Java is Interpreted
-

Source Code
Java source 1s text saved 1n a file with a .java
extension. Java looks like C++.

Compile source using Java compiler
javac Myprogram. java

Compiler produces an output file, which ordinarily
would be executable code (machine instructions).

Low-level "bytecode" file
Myprogram.class

Executing Java Programs
-

Standalone java program:

invoke the Java interpreter:
java Myprogram (no extension; assumes .class)

Loader finds Myprogram. class, loads it into local
memory, verifies it, and interprets (executes) it.

(run examples)

Example: A Complete Java Program
S

import java.io.*;

public class Testclass
{

public static void main(String args[]) throws
IOException

{

int count = 0O;

while (count < 10)
{
System.out.println("counter is " + count);
count++;
}
}
}

New concepts with Java?

Interpreter/Emulator/API
-

Interpreter/emulator 1s an old 1dea:
WINE: Windows interpreter for Linux OS
SoftWindows: Windows interpreter for Silicon Graphics
Executor: Macintosh emulator for Wintel PCs

Application Programmer Interface (API) 1s an old 1dea
OpenGL: Graphics language
Renderman
etc.

New Possibilities
«]

Combine API and Interpreter: network
transparency via HTML

- Each hardware platform has specific
implementation of API for local hardware

— Each platform can run interpreter

— Interpreter gives security from programs coming
over network

- Applications can run anywhere

The Robust Java API
« "/ /7

e The interface contains classes which can be declared
directly or extended which do complex tasks:
- Manage buttons
- Manage text input windows
— Display images
- Read audio files
— Run multiple threads in parallel

e Short Java programs can accomplish complex tasks via
the API.

Interpreted Java: What about
speed?

e API classes can perform well when
implemented locally

e Most applets end up being a series of API
calls

e Computers are faster

e Network is still the bottleneck for many
applications

Why is Java the best?
-

e |tisn't, necessarily!
e Includes powerful ideas

e First to get API + secure interpreted "platform
independence” to be widely accepted

Summary
S

Java Development Environment:
edit, compile, load, verify, execute

Applets are different from standalone Java programs

Java combines powerful API (via complex classes) with
interpreter and network (HTTP) interfaces.

Programming in Java
-

e Define data
e Calculate using data
e Output result

Java 1s object-oriented:
* Merge data and functions into object
* Invoke functions to operate on data
Java program must:

 Define data and functions (in a class)
* Invoke functions to compute things

Object-Oriented Programming: Classes

A is an object definition, and includes data and
functions on that data:

public class MyCourseGrade

{ ™~
int psetl; -
int pset2; Object
: data
int final exam;
—_ _
\
computeAverage () object
{ | > method

} _

Classes
«_oL_ 00777

Class: code which defines an object
Object: a variable (data + methods) which 1s an instance of a class
Java program: a bunch of class definitions, variables, etc.

Classes

One special class (the "mother of all classes") contains main(),
and this 1s where flow of control begins:

[

class Test

Enain

~ Kernel of execution is here!

-
class AnotherClass (like MyCourseGrade)

gemberFunc 1()

EemberFuan()

Notes
«

e Java flow of control starts in main(), in
whichever class main() is defined

e There can only be one class per file (unless
you are defining subclasses)

e [he filename must match the class name in a
Java source file!

Example 1

A Java program with one class and one member called main () :

import java.io.¥*;

public class Test

{

public static void main(String[] str)
throws IOException

{
System.out.println("That’s it, folks!");

}

Example 1: Scoping
-

class Test
member functions

main ()
data (none defined)

Example 2

import java.io.¥*;
public class Test
{
public static void main(String[] str)
throws IOException

{
System.out.println(“That it, folks!");

}
public void doStuff ()

{
System.out.println(“doing stuff.");

}

Example 2: Scoping
-

member functions
class Test

doStuff ()

data (none defined)

Example 3

Define an object of class Test and make a function call
- 0]

import java.io.*;
public class Test
{
public static void main(String[] str)
throws IOException
{
Test t; // t 1is of type "Test"
t = new Test(); // allocate object
t.doStuff(); // call member function
System.out.println("That it, folks!");

Example 3 (continued)

public void doStuff ()

{
System.out.println("I'm doing stuff.");
}
}
Notes:
eStatic methods cannot access nonstatic class members
directly

main () must always be static

Example 4
S

Test.java:
import java.io.*;
public class Test
{

public static void main(String[] str)
throws IOException

{
Stuff t;

t = new Stuff (),
t.doStuff () ;

System.out.println("That it, folks!");

Put main class and a different class in separate files:

Example 4
S

Stuff. java:
public class Stuff

{
public void doStuff ()

{
System.out.println("I'm doing stuff.");

}
}

Notes

* One class per file
* To compile: javac Test. java

Java l/O
o«]

The System object provides a way to manage I/O from a
more traditional "stream" (terminal window).

GUI-based I/0 requires the action () method to deal with
GUI mouse events.

The System object requires no action () method

But terminal I/O 1s inadequate in a browser-based (GUI)
environment.

Summary of Some Basic Java
Constructs

Everything 1s related to objects:

Data declaration:

int i; // declare i to be an int
Test t; // declare t to be
// an object of type Test
0; // set the int i equal to 0
new Test () ;
// initialize t and allocate space
// using a constructor

rr

Java Constructs

Flow of Control:

Traditional, but with object-oriented syntax for function calls
and member functions

Where control starts in the Applet class 1s important

Executable statements
Similar to C/C++: while, for, if/else,

switch, etc.

