An Introduction to Computer Graphics

Ruigang Yang

- Education
 - PhD, UNC-Chapel Hill, 2003
 - M.S. Columbia Univ., 1998
- Research
 - Computer vision/graphics
 - Large display visualization
 - Tele-presence

Outline

- Definitions:
 - What is Computer Graphics?
- Coverage:
 - What does Computer Graphics study?
- Applications:
 - What is Computer Graphics good for?

Definitions

- The creation, display, and storage of pictures with a computer.
- The process associated with producing images by digital rendering of a picture model.
- Generation of (possibly realistic) images of virtual scenes using computer hardware.
- A human-oriented system that uses the capabilities of a computer to create, transform, and display pictorial and symbolic data.
- The synthesis of artificial images--the creation of pictures from descriptions.

Covered Areas

• Imaging:

- Representing and handling 2D images.

- Modeling:
 - Representing objects using 3D models.
- Rendering:
 - Generating 2D images from 3D models.
- Animation:
 - Simulating changes over time.

Modeling

- How to represent complex objects in computer?
 - Human body
 - Mountain
 - Tree
 - Flower
 - ...

3D Modeling

Rendering

- 1960s the visibility problem
 - Roberts (1963), Appel (1967) hidden-line algorithms
 - Warnock (1969), Watkins (1970) hidden-surface algorithms

- 1970s raster graphics
 - Gouraud (1971) diffuse lighting
 - Phong (1974) specular lighting
 - Blinn (1974) curved surfaces, texture
 - Catmull (1974) Z-buffer hidden-surface algorithm
 - Crow (1977) anti-aliasing

Rendering

- How to generate photorealistic effects?
 - Color bleeding
 - Soft shadow
 - Caustics

Animation

- How to simulate the movement of ...?
 - Liquid
 - Human
 - Animal
 - Cloth
 - ...

Applications

- Entertainment:
 - Movies
 - Games
- Scientific visualization:
 Medical imaging
- Computer-aided design.
- Computer-aided education:
 - Training.

Movies

- **Objectives:** ٠
 - Create special effects.
 - Make cartoons.
- Challenges: •
 - High quality.
 - Photo-realistic.

Wednesday, October 07, 2015

Games

- Objectives:
 - Fun games.
- Challenges:
 - Interactivity.

Data Visualization

- Objectives:
 - Visualize data
- Challenges:
 - Huge datasets.

Medical Imaging

- Objectives:
 - Represent the measuring results visually.
 - Help to diagnose.

Computer-aided Design

- Objectives:
 - Shorten the design circle.

3D Printing

Give 3D Printer Color

Computational Hydrographic Printing Yizhong Zhang, Chunji Yin, Changxi Zheng, Kun Zhou

http://gaps-zju.org/hydrographics/index.html

Computer-aided Education

- Objectives:
 - Create virtual environments.

GRAPHICS/VISIO RESEARCH @ **GRAVITY**

My 3D Research

3D Reconstruction of Water

Residential Scene Modeling

important!

• They are everywhere!

Residential Scene Modeling

 Input: ground-based LiDAR point clouds with geo-registered images

Residential Scene Modeling

 Output: complete 3D models with textures of common objects in a residential scene

Show Video

Large Scale Semantic Reconstruction of Houses from LiDAR Data

Paper ID 240

3D Body Scanning

• <u>Play</u>

Pose Tracking

Virtual Try-on

Automatic Segmentation

Background (red) color seeds Foreground (blue) color seeds

Results of our automatic algorithm

Results of Grabcut

Stereoscopic Conversion

Original Image

Stereo: Red-Cyan Anaglyph

Stereoscopic Conversion

Original Image

Stereo: Red-Cyan Anaglyph

FOV Expansion

Original Image

FOV Expanded

FOV Expansion

Original Image

FOV Expanded

FOV Expansion

Content aware resizing case

Original Image

FOV Expanded

Original Image

FOV Expanded

FOV Expansion

Original Image

FOV Expanded

Thank you

Random Cool Stuffs

The Evolution of Computer Graphics

10.00 17. 217

Sketchpad , 1963 Ivan Sutherland

- early 1980s global illumination
 - Whitted (1980) ray tracing
 - Goral, Torrance et al. (1984), Cohen (1985) radiosity
 - Kajiya (1986) the rendering equation

Goral, Torrance etKajiya (1986) - the

en (1985) - radiosity ation

- late 1980s photorealism
 - Cook (1984) shade trees
 - Perlin (1985) shading languages
 - Hanrahan and Lawson (1990) RenderMan

- early 1990s non-photorealistic rendering
 - Drebin et al. (1988), Levoy (1988) volume rendering
 - Haeberli (1990) impressionistic paint programs

The Evolution of Computer Graphics

What is Reality

Traditional Rendering

What Is Multimedia?

- Multimedia is media and content that uses a combination of different content forms
- It includes a combination of text, audio, still images, animation, video, or interactivity content forms.

Haptic interface

Sensable Technologies Inc. PHANTOM Desktop

Immersion co. Impulse stick

Virtual Technologies Inc. Cyber Force

Image-Based Modeling and Rendering

Computer Vision

- A discipline related to Artificial Intelligence
 - "Let computer see"
- Obtaining 3D models A Branch of CV that focuses on reconstruction of 3D model from 2D images

Vision Lopot Output ZD Images

Computer Graphics

- What is the goal of computer graphics again
- Given a 3D model, we'll make a 2D image

Bridge the Gap between Computer Graphics & Computer Vision

State of the Art

Image Inpainting

http://www.iua.upf.es/~mbertalmio//restoration.html

View Morphing

http://www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm

Matting

http://www.cs.ust.hk/~leojia/all_final_papers/matting_siggraph04.pdf

Interactive Digital Photomontage

http://grail.cs.washington.edu/projects/photomontage/photomontage.pdf

High-Dynamic Imaging

Colorization Using Optimization

http://www.cs.huji.ac.il/~yweiss/Colorization/index.html

Giga Images

http://research.microsoft.com/ivm/HDView.htm

SIGGRAPH 2007 Capturing and Viewing Gigapixel Images Johannes Kopf, Matt Uyttendaele, Oliver Deussen, Michael Cohen

GEO-Tagging

Global dataset tags: Berlin, Germany, Deutschland, Europe, Art.

Seam Carving for Content-Aware Image Resizing

http://www.youtube.com/watch?v=vIFCV2spKtg

Parametric Reshaping of Human Bodies in Images

Height	 -+
Weight -	 +
Girth	 +

 	- +
 	-+
 	- +

1 ton	(title)	30	
	AL PARTY		
100.00	A.		

V		
1	N	
		+

Depixelizing Pixel Art

<u>http://research.microsoft.com/en-</u> <u>us/um/people/kopf/pixelart/supplementary/index.html</u>

Problem: How to model the water?

What we need

[1]. High speed cameras

What we need

[2]. Dye the water

[3]. Throw things into the water

What we need

[3]. Throw things into the water
What we need

[4]. Apply physical model and then ...

Why Engineering

Thank you

- Ruigang Yang
- ryang@cs.uky.edu
- www.vis.uky.edu/~ryang