CS 100

Tuesday
6 October 2015

Today's Agenda

- 0. Announcements
- 1. Calendar
- 2. Professor Ruigang Yang, UK Computer Science
- 3. Teem Geek Chapter 2
- 4. The Magic of Computer Science
 - A. Algorithms and Structure
 - B. Massive Parallelism (map reduce)

0. Announcements

- 13 October: Group Project Launch
 - Expect Group assignments and project details
- 20 October: Quiz 1
 - Begin to organize your notes for Quiz Study
- Office hours
 - Can check with Amy or Diane in CS department to see if a meeting and/or trip has curtailed office hours

1. Calendar

 HW3 ("numbers") due tonight by midnight tonight

```
int main () {
  int SHIFT=10; // number of shifts to print in table
  // ASCII codes to "decode" (this was given in the assigned problem)
  char A[55] = \{80, 94, 25, 58, 107, 94, 25, 80, 98, 101, 93, 92, 90,
                109, 108, 26};
  // Construct a string from the declared array of characters
  string message(A);
  // Print the table for each shift value, starting at zero
  for(int i =0; i < SHIFT; i++) {</pre>
    printShifted(message, -i);
    cout << endl;</pre>
  return 0:
```

```
// Shifts each ASCII character in string by "shift"
void printShifted (string s, int shift) {
   // print shifted values as characters, fixed field width so that
   // it lines up
   for (int i=0; i < (s.length()); i++)
      cout << setw(3) << (char)(s[i]-shift);
   cout << endl;

   // print shifted values as ASCII equivalents
   for (int i=0; i < (s.length()); i++)
      cout << setw(3) << s[i]-shift;
   cout << endl;
}</pre>
```

2. Professor Yang

- PhD UNC Chapel Hill
- Full Professor at UK

Teem Geek

• Clickers

The Magic of Computer Science (Part 2)

Any sufficiently advanced technology is indistinguishable from magic

- Arthur C. Clarke

There is no magic.

- Ken Calvert

Review: Powers of 2

2 ⁰ = 1	2 ⁴ = 16	2 ⁸ = 255	2 ¹² = 4096
$2^1 = 2$	$2^5 = 32$	2 ⁹ = 512	$2^{13} = 8192$
$2^2 = 4$	$2^6 = 64$	$2^{10} = 1024$	2 ¹⁴ = 16384
$2^3 = 8$	$2^7 = 128$	$2^{11} = 2048$	$2^{15} = 32768$

Recap

- The power of computing comes from the ability to manipulate <u>digital information</u>
- Analog-to-Digital conversion translates natural phenomena (e.g., waveforms) into digital representation
 - Music (MP3), voice telephony
 - Images (JPEG, HDTV)
- Once information is encoded digitally, it can be:
 - Stored on any digital medium
 - Manipulated by any computer
 - Duplicated perfectly at very low cost

Algorithms

Exploit structure of a problem / ordering

Very common problem:

Order a set of information

Resumes

- Last Name, First Name
- Lots of other info...

 Problem – return resumes to owners (after ingesting information, of course)

Ordering is Crucial for Queries

- Queries (or "data mining")
 - Find information in the set of data to answer questions
 - Information can be composite:
 - How many people are from Jessamine county?
 - Or individual
 - What is Jamie Lewis' age?
- Queries are hard without structure / ordering

Algorithm for Ordering

- Multiple stages
 - "sort" smallest stack
 - Reduce number of stacks via merge

Ordering a.k.a. Sorting

Sort

- Sort a single group of papers any way you want.
 Make sure at the end your group of papers is in alphabetical order by last name.
- At the end of this phase we should have a bunch of stacks of papers, each of which is alphabetized.

Total Ordering: Can Merge to Reduce Number of Stacks

- Merger task: merge two stacks together, keeping them in alphabetical order
- Now find another merger and negotiate again (one of you drops out, the other continues to the next round as a merger)
- Double down!

Alternate Plan: Shards

- How about creating shards based on first letter of last name?
- 26 shards
- Now order each shard

Any relationship to binary numbers?

There is no magic.

Ordered Data: Can Answer Queries

- Ordered / structured data very powerful
- But there is just one of me to rifle through the data source to answer questions....

- What about information like this?
 - What are the top Kentucky counties (by count) represented in this class?

Parallelism

 Structure of many problems allows the possibility to solve them in pieces, where the pieces happen simultaneously

(There is no magic)

http://www.tutorialspoint.com/map_reduce/map_reduce_quick_guide.htm

MapReduce

- Programming model for solving problems
 - In parallel
 - On a cluster
 - Low level abstractions (binary numbers)
 - Structure of information (algorithms)
 - Massively parallel / distributed solutions driven by data centers available on a global scale

TakeAways

- Numbers are an abstraction
 - At the lowest level, they are binary sequences
- Media is an abstraction
 - At the lowest level, digital media is a binary sequence
- Algorithms are abstractions
 - At the lowest level, they are sequences of operations on binary sequences
- Parallelism is an abstraction
 - At the lowest level, it is simultaneous, structured activity on binary sequences

Distributing Results

Collect and show results