CS 100

Tuesday
22 September 2015

A A e

Today’s Agenda

Mr. Jim Schroder: UPS

Announcements

Resumé Return

Selfie review

Teem Geek Intro: “The Genius Programmer”
What is Computer Science? (Part Il: CS Ideas)

1. Announcements

* Prep for next week: reading assignment
internships)

* Clickers: click-in is now obligatory for
attendance

e Calculus exams [today is first one: slip out at
4:50pm]

2. Resumeé Return
(please be patient, and quiet)

3. Selfies

Discussion of First Assignment

4. Team Geek

(Launch clickers)

5. What is Computer Science?
Part Il: CS Ideas

Computer Science Joke

Q: Why do programmers always mix up Halloween and Christmas?

A: Because Oct 31 == Dec 25!

Computer Science Joke

A man flying in a hot air balloon suddenly realizes he’s lost. He
reduces height and spots a woman down below. He lowers the
balloon further and shouts to get directions, "Excuse me, can you
tell me where | am?"

The woman below says: "Yes. You're in a hot air balloon,
hovering 30 feet above this field."

"You must work in Information Technology," says the balloonist.
"I do" replies the woman. "How did you know?"

"Well," says the balloonist, "everything you have told me is
technically correct, but It's of no use to anyone.”

Computer Science Joke

The woman below replies, "You must work in management.”

"I do," replies the balloonist, "But how'd you know?"*

"Well", says the woman, "you don’t know where you are or
where you’re going, but you expect me to be able to help.

You're in the same position you were before we met, but now
somehow it’s my fault."

Computing Science ldeas

* Paradigm, n: EXAMPLE; PATTERN, esp. an
outstandingly clear or typical example or
archetype...

* |n Computing Science (as in many areas of
life), certain ideas/techniques appear over
and over

* The successful computing professional
recognizes these concepts and knows how to
apply them in a variety of contexts

CS Big Ideas

* Hierarchical Abstraction
 Compositionality
* Caching

Hierarchical Abstraction

e Basicidea: organize and name things in
hierarchical groups

— Refer to many items by one name
 What is being abstracted?

— Examples

 Citizens of the United States/Kentucky/Madison
County/Richmond

e Students in the University of Kentucky/College of
Engineering/Computer Science Department/Lab for
Advanced Networking

Hierarchical Abstraction

* Especially useful for, e.g., routing
Ms. Sue Jackson
123 Main Street
Boston, MA 02215-0139

Geometry / Geo Example

* World map: divided into regions
— Regions divided into sub-components

— Zoom level excludes most data except for the
region of interest

e Street view data

— Viewpoint location / direction limits data required
to generate view

— Possible movements allow “pre-fetching”

Compositionality

* Lots of systems in the world work like this:

— A few small, elementary things are “given”

— Some way is defined to compose things to get
new things

e Canonical example:
* Others?

Peano’s Axioms

O is a natural number.
“=" denotes equality.
— reflexive, transitive, symmetric

If m is a natural number, then S(m) is a natural number
(called the “successor” of m).

For any natural number m, S(m) # 0.
For any natural numbers m and n,

if S(m) =S(n), then m =n
For any set P of natural numbers, if

— P contains 0
— For any natural number m, if P contains m, then P contains S(m)

then P contains all natural numbers

Peano’s Axioms, cont.

* Addition:
— For any natural numbers a, b: we can definea +b
as follows:
*a+0=a3
e a+S(b)=S(a+b)

* Multiplication:
— For any natural numbers a, b: we can definea x b
as follows:
*ax0=0
e axS(b)=(axb)+a

Peano’s Axioms, cont.

e Can show that addition
— IS commutative
— IS associative

e Can show that multiplication
— IS commutative
— IS associative
— distributes over addition

Composition and Programming

* Many programming languages have this
structure:

— A few “atomic” statements:
* Assignment: x=3;
* Empty:

— Composition operators make composite statements:
* Sequencing: x=3; y=x+1;
e Conditional: if (A[i] ==target) j=1i; else i=i+1;
* Iterative: while (A[i] !=target)i=i+1;

* Functional abstraction: Single expression represents a
whole computation

Composition and Programming

* The idea: build up large programs/systems by
composing smaller ones
— Functional (or procedural) abstraction is the
primary scaling mechanism® in programming
*i.e., a way to may things work in big systems

Composing Programs:
The Unix model

* Unix Systems convention (dates to 1970’s):
— Programs communicate via [standard] input and
output streams:

* Read data from standard input
* Write results to standard output

stdin stdout

program

— Small programs that operate on text input
— Example: grep

Composing Programs:
The Unix model

* Composing programs:

— “Pipeline” = Connect stdout of one program to
stdin of another

stdout
program program
stdin

stdin stdout

— Example: sort lines in a text file containing “@":
e grep ‘@’ foo.txt | sort

.

Composition operator

The Power of the Unix Model

* You have a file (named “roster.txt”), containing many lines,
each with:

— Name

— Student ID

— Username

— Email

— Degree, Major-Minor, Classification, Hour(s), Status

Example:

"Seales, William Brent" 10210288 CZQI1442 seales@uky.edu BSCS-EN
PCOS-BSCS Undergrad - Freshman 1 Enrolled

The Power of the Unix Model

* You are asked to extract just the list of email
addresses, and present them in sorted order

How will you do it?

The Power of the Unix Model

* You are asked to extract just the list of email
addresses

Windows solution:.... ?

Unix solution:

cut -f 4
cut -f 4
cut —-f 4
cut -f 4
cut —-f 4

tmp.txt

roster.
roster.
roster.
roster.
roster.

Txt
Txt
Txt
Txt
Txt

run the pipeline:

| more

| grep -1 david

| fgrep ‘@’ | sort
| fgrep 'G@' | sort | more
| fgrep '@' | sort >¢&

Unix and Windows

e Unix model:

— Data (files) exist independent of applications, may be
processed by many different programs

— Interaction with the user is optional
— Build small, simple (correct!) programs and compose them

 Windows model (now also the smartphone model)

— Every data file has an (unique?!) associated program that
is the way to access it
* Each program owns its own data

— Every program is interactive
— No composition of programs &

Caching

* |dea: once you have expended some
resources to obtain some information, you
may want to store it in case you need it again

(at least for a little while)

* Non-computing examples?

* atom-based examples are rare

 Computing example(s)?

Modern Wonder:
the Domain Name System

Internet protocols deal with 32-bit IP addresses
— 10000000101000111000110011011101, or
Ox80A38CDD, or 128.163.140.221

How packets are routed based on IP addresses...
Names are easier for humans

Problem: design a system for resolving names to (Internet)
numbers and other information

Require the following characteristics:
* Scalable to billions of name-number pairs

* Distributed control: UK gets to decide what names end in "uky.edu"; CS
dept gets to decide what names are under "cs.uky.edu" (but not
pa.uky.edu or delta.com or...)

* Robust: no single point of failure

Domain Name System

* Every URL contains a DNS name
— http://video.google.com
— http://protocols.netlab.uky.edu/~calvert/

* Every time you click, your computer sends a message to its local DNS
server asking to resolve that DNS name to an IP address

* This happens at least millions of times per second worldwide

facebook.com
nameserver =

"facebook.com" is
69.63.176.140

Scaling the DNS

The DNS depends on two standard CS
techniques:

— Hierarchical Abstraction
 The namespace authority is hierarchical

* Names in the same group have the same
suffix (e.g., “.org.”) -

: d
* Each group only concerned with those com J| S JLOr8

. (root)

below it
— Caching amazon |/ | flickr uky
e Remember what you’ve learned | |
* Exploit locality of reference google

. . CS engr
e Amortize the cost of one resolution over

many queries

Take Aways

Crucial Computing Science concepts:

* Hierarchy

— Subdivide to manage scale
* Composition

— Fundamental idea for abstraction engineering
e Caching

— Key performance aid

