What is Computer Science?
Part |

Majors With The Highest Earmnings

rtrioom Engncers |
Prarmacy Scencessameisaton |
Mathemats and omputer cence. |
———
cnemical Enpncer |
cecticalEngnerns |
Naval Architecture/Marine Engineering _
MechanicaEngnorny |
VetaugicalEngnerng |
ining an Minral Enginerins |

0 $20,000 $40,000 $60,000 $80,000 $100,000 $120,000
Majors With The Lowest Earnings

Health/Medical Preparatory Programs
Visual and Performing Arts
Communication Disorders Sciences
Studio Arts

Drama and Thealer Arts

Social Work

Human Services/Community Org.
b A http://www.npr.org/blogs/money/
2013/09/10/219372252/the-most-and-least-lucrative-

college-majors-in-1-graph

Theology and Religious Vocations
Early Childhood Education

Counseling Psychology

o

$20,000 $40,000 $60,000 $80,000 $100,000 $120,000

"Computers represent a radical

novelty ... Coming to grips with a radical
novelty amounts to creating and
learning a new foreign language that
can not be translated into one's mother

tongue”

- Edsger W. Dijkstra

(“ EW DII)
1930-2002

Edsger W. Dijkstra, 1972 Turing Award Winner

ANNIVERSARY EDITION WITH FOUR NEW CHAPTERS

o ~
SAVES3

0
z
0
0
m

i

' 2
>
A
m
&
z
@
z
m
m
Z_.'J
z
0

“...The programmer, like the poet, works

MY THICATL only slightly removed from pure thought-
ey stuff. He builds his castles in the air, from

WS\ IONMNEE air, creating by exertion of the imagination.
Few media of creation are [...] so readily
capable of realizing grand conceptual
structures...”

FREDERICK P. BROOKS, JR.

Fred Brooks, 1999 Turing Award Winner. “For landmark contributions to computer
architecture, operating systems, and software engineering.”

The Name Game

 “Computer Science” is an unfortunate name

“Computer Science is no more about computers
than Astronomy is about telescopes.” — EWD

“Any discipline that has ‘science’ in its name isn’t.”

- unknown
* Better (?) possibilities:
— Computing Science
— Abstraction Engineerin

my favorite

Computing Science

Three basic parts:

— Foundations/Theory:
* What can/can’t be computed?
* How can we compare different ways of solving a problem?
* What is the optimal way to solve problems of a given type?
— Systems Design/Engineering:
* How can we organize systems so that they compute faster, using

less energy, in less space, ... ?
* What can be done in hardware? ... software?

* What are the right abstractions: what to hide, what to expose?

— Applications:
* How can computation be used to make our lives better?

Example Sub-Fields

* Theory:
— Numerical analysis, algorithms, complexity
* Systems Design/Engineering:

— Networking, Operating Systems, Software
Engineering, Visualization and Graphics

* Applications

— Artificial Intelligence, Scientific Computing, Databases,
Machine Learning, Data mining, Entertainment
(Games), Biomedical Informatics, ...

* Plus 400,000+ different things at the “App Store”!

What is Computation?

Definition 0: Computation what computers do.
* Then the question becomes:

What is a Computer?

* Something that performes,
or aids in performing,
some kind of calculation,
usually involving symbol
manipulation.

Jacquard loom
ca. 1800 =

€ Abacus
ca. 2500 B.C.

What is a “Computer”?

Some of the gals- circa 1944, Still from Top Secret Rosies: The Female "Computers of Wi

“Some of the gals — circa 1944” — taken from
Top Secret Rosies: The Female ‘Computers’ of WWII

A WWII Application of Computers:
Ballistics Tables for Big Guns

3

Computing is Older Than You Think

A model of

Charles Babbage’s
“Analytical Engine”
described circa 1837,
but (likely) never built.

It was the first
programmable digital
computer, and resembled
modern computer
architecture in many
ways. (!)

Texas Instruments SR-10

Introduced in November 1972, with a direct
mail price of US$149.95

That is $859 in today’s dollars...

Fortran

0« FOR §
e 3 FORTRAN STATEMENT ricRTIoN
STATEMENT :
NUMBER 8
o s |7 72 0|
€ | PROGRAM FOR FINDING THE LARGEST VALUE
c! & ATTAINED BY A SET OF NUMBERS -
|
i | DIMENSION A(999) B
_1'___ FREQUENCY 30¢2,1,10), 5(100)
J _BML(A_LIL‘_LLN)_.—_—_
L) g FORMAT (13/(12F6.2))
|
X BIGA = A(1)
_1| 5| | bo 20 1=2,N
|30 | | IF (BIGA-A(I)) 10,20,20
| 10 BIGA = A(I)
—l S
| 20 | | CONTINUE
L _| PRINT 2, N, BIGA al
 FORMAT (22H1THE LARGEST OF THESE 13, 12H NUMBERS IS F7.2)

STOP 777177

Punch Cards

Card Reader Service for 80-Coluran IBM Punch Cards http://PunchCardReader.com
BED R O OB RO BER B AW WD NAE WD N GURER W M D OAEM AW D ANED D B W

i1 mn]] I | i i i 1 1 mi i
goooooogoonoofo
MmN nnrantaAanw
IRERRRERT EREREE
B222:822222:22
IFERERE] FERI FER
4a4fQ4dcdaafeas]

3 H H B T

666665666666[6¢

IRRERRERERREREE
ssesfsseafesss
3§9999939999393

High Schools in 1979

US $1298 with 4K RAM ($4,176 in 2013)
US $2638 with 48K RAM ($8,488 in 2013)

US $S100 from Sears ($434in 2013)

Computer: Key Characteristics

A method of providing input

— Encoded in some way (always!)

Ability to be in one of a number of different
states
— Configuration of wheels, or contents of memory

Ability to change state autonomously

— Power must be applied

— New state derived from old state

— Computation defined by sequence of states

A method of producing output

“Does it matter what hardware | get?”

* Fact: Once they attain a certain level of
complexity, all computers have the same
computational power.

Anything that can be computed on a Mac

can be computed on a Wintel machine
ora PDP11 -

or an iPhone

ora...

What is Computation?

* Proposed Definition 1:

Automatic symbol manipulation to accomplish some
purpose.

 “Automatic” = according to fixed rules

IH

 “symbol” = an abstract representation of something

* “manipulation” = comparing, modifying

The Most General Computer

Alan Turing (1912-1954)

Came up with an idealized
device as a model for
reasoning about
computation.

Today it is known as the
“Turing Machine” model.

Because of its simplicity, it is
(relatively) easy to reason

about what it can/can’t
do.

Turing Machine Components

* (Semi-infinite) Tape, divided into squares
— Input is written on the first part of the tape
— Rest of the tape is blank

* Read-write head
— Scans the square under the head
— Can write 1, 0 or blank into the square

* Fixed control program
— Keeps track of current program “state”

— Next actions based on current state and tape contents
e write 0 or 1 and move head L or R and change to next state

The Church-Turing Thesis

* Around the same time Alan Turing came up
with the Turing Machine model, a number of
other scientists were proposing other very
basic models of computation

— Alonzo Church was one

* Anything that can be computed, can be
computed with a Turing Machine

* Or with any of the other very simple models of
computation: lambda calculus, combinators

The Universal Machine

Key idea:

— Write a Turing Machine Program that takes other
programs as input

— Given a program as input, and the input data to
run it on, simulate the computation that would
occur if the given program were the TM’s control
program

The Universal Machine can simulate any other
machine.

The Universal Machine

Church-Turing Thesis:

The Turing Machine — or any machine powerful
enough to run a Universal Machine program —is
as powerful as any thinkable computing device

— in the sense that anything that can be computed by
one can be computed by the other

— “powerful enough:”
e Conditionals (“if” statements)
* “While” loops

What's the point? It’s all about the software!

Combinators: Turing-Complete
Computing Framework

* Function application:
— Suppose f is a function (e.g., addition)
— Denote the application of f to arguments by
juxtaposition: f xy means “f(x,y)”
* x and y here represent “any expression”

— Except we assume association happens to the left:
so f x yis really ((f x) y), or “take the result of
applying f to x, and apply it to y”

Combinators

Define two basic functions, call them S and K

— K takes two arguments, throws the second away:
Kxy => x
“=>" means “reduces to” — the symbol manipulation part!
— S takes 3 arguments, applies 15t to 39, then applies
that to result of applying 2"9 to 3¢:
Sxyz =>xz(yz) =(xz)(yz)
— Theorem: Any function that can be computed can be
defined in terms of these basic functions.

* |dea: Build up other functions in terms of these:
Define B as S(KS)K. Thenshow B xyz=>..=>x(yz)
Define C as S(BBS)(KK). Thenshow Cxyz=>..=>xzy

A Hard Problem

Write a program (any language) that does the following:
— Inputs:
* alJava program (stored in a text file)
* another file, given as input to the Java program (System.in)

— Output: one word

* print "yes" if the given program, if compiled and run with the given file as input,
eventually terminates

* "no" if the program never terminates with that file as input
— The program must always give an answer in finite time
— The program must work for any legal Java program and input

program you build this
> "ves” (program finishes)
program

-/7 "no” (runs forever)
input

* Theorem: You can’t do it. No program satisfies this specification!
— Known as the "Halting Problem”

— Alan Turing proved the impossibility of solving the Halting Problem before any
electronic computer existed!

Another Hard One: Traveling Sales Rep

To
ATL KC SAN DEN MSP DFW

ATL |0 [$350 | $600 | $575 | $490 | $375
kc [$350 |0 | $450 | $200 | $420 | $300
From SAN|$600 | $450 [0 | $440 | $550 | $300
DEN| $575 | $200 | $440 |0 | $175 |$275
MSP| $490 | $420 | $550 | $175 |0 | $425
DFW/| $375 | $300 | $300 | $275 | $425 | 0

* This table shows airfares to fly from city to city
— Simple pricing model:
* All flights one-way, nonstop
* Price between two cities is the same in both directions
* You are a technical sales rep, and you have to visit all these
cities each month

Traveling Sales Rep

To
ATL KC SAN DEN MSP DFW

ATL|O $350 | $600 | $575 | $490 | $375
Kc | $350 | O $450 | $200 | $420 | $300
From SAN | $600 | $450 | O $440 | $550 | $300
DEN| $575 | $200 | $440 | O $175 | $275
MSP| $490 | $420 | $550 | $175 |0 $425
DFW| $375 | $300 | $300 | $275 |$425 | O

Your boss is a stickler, won't pay for you to fly to any city
twice

Your airfare budget is only S1600/month!
Can you visit all cities once (& get home) for = $16007?

You suspect it's not possible, but want to be sure before
asking your boss for more money

Traveling Sales Rep

To
ATL KC SAN DEN MSP DFW

ATL |0 [$350 | $600 | $575 | $490 | $375
kc [$350 |0 | $450 | $200 | $420 | $300
From SAN|$600 | $450 [0 | $440 | $550 | $300
DEN| $575 | $200 | $440 |0 | $175 |$275
MSP| $490 | $420 | $550 | $175 |0 | $425
DFW/| $375 | $300 | $300 | $275 | $425 | 0

* Generalize: write a program (algorithm) to answer this
question:

— Given a table of N cities, is there a tour that visits each city exactly
once and ends up where it started, that costs less than $X?

— Must work for any size table (N) and any bound X

Traveling Sales Rep

To
ATL KC SAN DEN MSP DFW

ATL|O $350 | $600 | $575 | $490 | $375
Kc | $350 | O $450 | $200 | $420 | $300
From SAN | $600 | $450 | O $440 | $550 | $300
DEN| $575 | $200 | $440 | O $175 | $275
MSP| $490 | $420 | $550 | $175 |0 $425
DFW| $375 | $300 | $300 | $275 |$425 |0

 There is no known solution that works significantly better
than trying all the possible tours!

* How many possible tours are there? (See s 275)

— For six cities: 60 (not counting rotations and reversals)
— For twelve cities: 19,958,400
— For 25 cities: 3.1 x 1023 (= half a mole)

Traveling Sales Rep

To
ATL KC SAN DEN MSP DFW

ATL |0 [$350 | $600 | $575 | $490 | $375
kc [$350 |0 | $450 | $200 | $420 | $300
From SAN|$600 | $450 [0 | $440 | $550 | $300
DEN| $575 | $200 | $440 |0 | $175 |$275
MSP| $490 | $420 | $550 | $175 |0 | $425
DFW/| $375 | $300 | $300 | $275 | $425 | 0

But: Nobody has been able to prove that’s the best you can
do!
So: in spite of decades of trying:

— Nobody has found a better-than-brute-force solution

— Nobody has proved there is no better solution

Note: this is called the “P vs. NP” problem, and it is the most
famous open problem in Computer Science

Theoretical Computer Science

* Deals with finding quantitative ways to answer
the question “How hard is this problem?”
* Looks for lower bounds

— “Any solution for this problem takes at least time
exponential in the size of the input”

* Looks for better algorithms for all kinds of
problems
— Algorithm = Turing Machine Program

— A step-by-step procedure for computing output from
input

Engineering Across Scale

* Take locomotion as an example
— Crawl
— Walk
— Run
— Ride a bike
— Drive a car
— Fly a plane
— Rocket?

Modern Wonder:
the Domain Name System

Internet protocols deal with 32-bit addresses
— 10000000101000111000110011011101, or
Ox80A38CDD, or 128.163.140.221

Names are easier for humans

Problem: design a system for resolving names to (Internet)
numbers and other information
Require the following characteristics:

» Scalable to billions of name-number pairs

* Distributed control: UK gets to decide what names end in "uky.edu"; CS
dept gets to decide what names are under "cs.uky.edu" (but not
pa.uky.edu or delta.com or...)

* Robust: no single point of failure

Domain Name System

* Every URL contains a DNS name
— http://video.google.com
— http://protocols.netlab.uky.edu/~calvert/

* Every time you click, your computer sends a message to its local DNS
server asking to resolve that DNS name to an IP address

* This happens at least millions of times per second worldwide

facebook.com
nameserver =

"facebook.com" is
69.63.176.140

Scaling the DNS

The DNS depends on two standard CS
techniques:

— Hierarchy
 The namespace authority is hierarchical

* Names in the same group have the same
suffix (e.g., “.org.”) -

: d
* Each group only concerned with those comn e Lore

. (root)

below it
— Caching amazon || | flickr | | uky
e Remember what you’ve learned / |
* Exploit locality of reference google

. . CS engr
e Amortize the cost of one resolution over

many queries

The Central Intellectual Challenge of Computing

How to keep the complexity of our systems from
overwhelming us?

SCALE

Computer Science vs.
Computer Engineering

More abstract

S
Q
)
)
o
&
@)
)

Operating System

Device Drivers

More concrete

Hardware

Take-Aways — 1

* Computers are a “radical novelty” — unlike
anything else humanity has invented.

 Computation is about symbol manipulation.

— The Turing Machine is a simple model of a very
powerful computing device.

— Some surprisingly simple systems are capable of
computing anything that can be computed
 The Church-Turing Thesis says all sufficiently-
powerful computing devices can compute the
same set of functions (although some may do it
faster than others)

Take-Aways — 2

* There are problems that can be clearly and

precisely stated, but that cannot be solved with
an algorithm.

That is: some things can’t be computed.

Halting Problem: Given a program and its input, determine
whether the program ever stops when run on the input.

 Some problems are believed to not be efficiently
solvable; we can only solve instances of limited
Size.

“Traveling Sales Rep” is one.

Take-Aways — 3

* A key problem in CS is how to build systems that
scale: grow large and still function efficiently.

e Two commonly used techniques for building
scalable systems:

— Hierarchical structure: focused responsibility and
abstraction

— Caching: saving results of a computation for later re-
use, taking advantage of locality of reference

 The Central Challenge of Computing is how to
manage complexity.

CS100 Action ltems

Prepare for Job Fair
Read first chapter of “Team Geek”

Resolve any remaining start-up issues
— Clickers

— Submission of assignments to portal

— Roster / email

Consider meeting other CS100 students for
the purpose of grouping up for the project

What is Computer Science *really*
about?

